Christina L. Pier
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina L. Pier.
Infection and Immunity | 2008
Michael R. Baldwin; William H. Tepp; Amanda Przedpelski; Christina L. Pier; Marite Bradshaw; Eric A. Johnson; Joseph T. Barbieri
ABSTRACT Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans and are classified as category A toxins. There are seven serotypes of BoNTs defined by the lack of cross-serotype toxin neutralization. Thus, an effective vaccine must neutralize each BoNT serotype. BoNTs are organized as dichain A-B toxins, where the N-terminal domain (light chain) is a zinc metalloprotease targeting soluble NSF attachment receptor proteins that is linked to the C-terminal domain (heavy chain [HC]) by a disulfide bond. The HC comprises a translocation domain and a C-terminal receptor binding domain (HCR). HCRs of the seven serotypes of BoNTs (hepta-HCR) were engineered for expression in Escherichia coli, and each HCR was purified from E. coli lysates. Immunization of mice with the E. coli-derived hepta-serotype HCR vaccine elicited an antibody response to each of the seven BoNT HCRs and neutralized challenge by 10,000 50% lethal doses of each of the seven BoNT serotypes. A solid-phase assay showed that the anti-hepta-serotype HCR sera inhibited the binding of HCR serotypes A and B to the ganglioside GT1b, the first step in BoNT intoxication of neurons. This is the first E. coli-derived vaccine that effectively neutralizes each of the seven BoNT serotypes.
Infection and Immunity | 2013
Regina Clare Meyer Whitemarsh; William H. Tepp; Marite Bradshaw; Guangyun Lin; Christina L. Pier; Jacob M. Scherf; Eric A. Johnson; Sabine Pellett
ABSTRACT Botulinum neurotoxins (BoNTs) are synthesized by Clostridium botulinum and exist as seven immunologically distinct serotypes designated A through G. For most serotypes, several subtypes have now been described based on nominal differences in the amino acid sequences. BoNT/A1 is the most well-characterized subtype of the BoNT/A serotype, and many of its properties, including its potency, its prevalence as a food poison, and its utility as a pharmaceutical, have been thoroughly studied. In contrast, much remains unknown of the other BoNT/A subtypes. In this study, BoNT/A subtype 1 (BoNT/A1) to BoNT/A5 were characterized utilizing a mouse bioassay, an in vitro cleavage assay, and several neuronal cell-based assays. The data indicate that BoNT/A1 to -5 have distinct in vitro and in vivo toxicological properties and that, unlike those for BoNT/A1, the neuronal and mouse results for BoNT/A2 to -5 do not correlate with their enzymatic activity. These results indicate that BoNT/A1 to -5 have distinct characteristics, which are of importance for a greater understanding of botulism and for pharmaceutical applications.
Infection and Immunity | 2005
Michael R. Baldwin; William H. Tepp; Christina L. Pier; Marite Bradshaw; Mengfei Ho; Brenda A. Wilson; Robert B. Fritz; Eric A. Johnson; Joseph T. Barbieri
ABSTRACT Clostridium botulinum neurotoxins (BoNTs) are the most toxic proteins for humans. The current clostridial-derived vaccines against BoNT intoxication have limitations including production and accessibility. Conditions were established to express the soluble receptor binding domain (heavy-chain receptor [HCR]) of BoNT serotypes A and E in Escherichia coli. Sera isolated from mice and rabbits immunized with recombinant HCR/A1 (rHCR/A1) from the classical type A-Hall strain (ATCC 3502) (BoNT/A1) and rHCR/E from BoNT serotype E Beluga (BoNT/EB) neutralized the homologous serotype of BoNT but displayed differences in cross-recognition and cross-protection. Enzyme-linked immunosorbent assay and Western blotting showed that α-rHCR/A1 recognized epitopes within the C terminus of the HCR/A and HCR/E, while α-rHCR/E recognized epitopes within the N terminus or interface between the N and C termini of the HCR proteins. α-rHCR/EB sera possessed detectable neutralizing capacity for BoNT/A1, while α-rHCR/A1 did not neutralize BoNT/E. rHCR/A was an effective immunogen against BoNT/A1 and the Kyoto F infant strain (BoNT/A2), but not BoNT serotype E Alaska (BoNT/EA), while rHCR/EB neutralized BoNT/EA, and under hyperimmunization conditions protected against BoNT/A1 and BoNT/A2. The protection elicited by rHCR/A1 to BoNT/A1 and BoNT/A2 and by rHCR/EB to BoNT/EA indicate that immunization with receptor binding domains elicit protection within sub-serotypes of BoNT. The protection elicited by hyperimmunization with rHCR/E against BoNT/A suggests the presence of common neutralizing epitopes between the serotypes E and A. These results show that a receptor binding domain subunit vaccine protects against serotype variants of BoNTs.
The Journal of Infectious Diseases | 2016
Susan E. Maslanka; Carolina Lúquez; Janet K. Dykes; William H. Tepp; Christina L. Pier; Sabine Pellett; Brian H. Raphael; Suzanne R. Kalb; John R. Barr; Agam K Rao; Eric A. Johnson
Botulism is a potentially fatal paralytic disease caused by the action of botulinum neurotoxin (BoNT) on nerve cells. There are 7 known serotypes (A-G) of BoNT and up to 40 genetic variants. Clostridium botulinum strain IBCA10-7060 was recently reported to produce BoNT serotype B (BoNT/B) and a novel BoNT, designated as BoNT/H. The BoNT gene (bont) sequence of BoNT/H was compared to known bont sequences. Genetic analysis suggested that BoNT/H has a hybrid-like structure containing regions of similarity to the structures of BoNT/A1 and BoNT/F5. This novel BoNT was serologically characterized by the mouse neutralization assay and a neuronal cell-based assay. The toxic effects of this hybrid-like BoNT were completely eliminated by existing serotype A antitoxins, including those contained in multivalent therapeutic antitoxin products that are the mainstay of human botulism treatment.
Biochemistry | 2009
James S. Henkel; Mark J. Jacobson; William H. Tepp; Christina L. Pier; Eric A. Johnson; Joseph T. Barbieri
Botulinum toxins (BoNT) are zinc proteases (serotypes A-G) which cause flaccid paralysis through the cleavage of SNARE proteins within motor neurons. BoNT/A was originally organized into two subtypes, BoNT/A1 and BoNT/A2, which are approximately 95% homologous and possess similar catalytic activities. Subsequently, two additional subtypes were identified, BoNT/A3 (Loch Maree) and BoNT/A4 (657Ba), which are 81 and 88% homologous with BoNT/A1, respectively. Alignment studies predicted that BoNT/A3 and BoNT/A4 were sufficiently different from BoNT/A1 to affect SNAP25 binding and cleavage. Recombinant light chain (LC) of BoNT/A3 (LC/A3) and BoNT/A4 (LC/A4) were subjected to biochemical analysis. LC/A3 cleaved SNAP25 at 50% of the rate of LC/A1 but cleaved SNAPtide at a faster rate than LC/A1, while LC/A4 cleaved SNAP25 and SNAPtide at slower rates than LC/A1. LC/A3 and LC/A4 had similar K(m) values for SNAP25 relative to LC/A1, while the k(cat) for LC/A4 was 10-fold slower than that for LC/A1, suggesting a defect in substrate cleavage. Neither LC/A3 nor LC/A4 possessed autocatalytic activity, a property of LC/A1 and LC/A2. Thus, the four subtypes of BoNT/A bind SNAP25 with similar affinity but have different catalytic capacities for SNAP25 cleavage, SNAPtide cleavage, and autocatalysis. The catalytic properties identified among the subtypes of LC/A may influence strategies for the development of small molecule or peptide inhibitors as therapies against botulism.
FEBS Letters | 2011
Christina L. Pier; Chen Chen; William H. Tepp; Guangyun Lin; Kim D. Janda; Joseph T. Barbieri; Sabine Pellett; Eric A. Johnson
Botulinum neurotoxins (BoNTs), the causative agent of human botulism, are the most potent naturally occurring toxins known. BoNT/A1, the most studied BoNT, is also used as an important biopharmaceutical. In this study, the biological activity of BoNT/A1 is compared to that of BoNT/A2 using neuronal cell models. The data obtained indicate faster and increased intoxication of neuronal cells by BoNT/A2 than BoNT/A1, and that the mechanism underlying this increased toxicity is faster and more efficient cell entry that is independent of ganglioside binding. These results have important implications for the development of new BoNT based therapeutics and BoNT countermeasures.
Infection and Immunity | 2008
Christina L. Pier; William H. Tepp; Marite Bradshaw; Eric A. Johnson; Joseph T. Barbieri; Michael R. Baldwin
ABSTRACT The botulinum neurotoxins (BoNT) are the most toxic proteins for humans and designated “Category A Select Agents.” The current vaccine against botulism is in limited supply, and there is a need to develop new vaccine strategies. A recombinant BoNT/A toxoid was produced in Clostridium botulinum that contained a double amino acid substitution, R363A Y365F (termed BoNT/ARYM). BoNT/ARYM was noncatalytic for SNAP25 and nontoxic for mice. Immunization with BoNT/ARYM protected mice from challenge at levels that were similar to chemically inactivated BoNT/A toxoid. BoNT/ARYM elicited an immune response against the light-chain and heavy-chain components of the toxin. Neutralizing anti-BoNT/ARYM sera blocked BoNT toxicity in primary cortical neurons and blocked ganglioside binding by the heavy chain. BoNT/ARYM represents a viable vaccine candidate for a holotoxoid against botulism.
Applied and Environmental Microbiology | 2010
Guangyun Lin; William H. Tepp; Christina L. Pier; Mark J. Jacobson; Eric A. Johnson
ABSTRACT Clostridium botulinum subtype A2 possesses a botulinum neurotoxin type A (BoNT/A) gene cluster consisting of an orfX cluster containing open reading frames (ORFs) of unknown functions. To better understand the association between the BoNT/A2 complex proteins, first, the orfX cluster proteins (ORFX1, ORFX3, P47, and the middle part of NTNH) from C. botulinum A2 strain Kyoto F and NTNH of A1 strain ATCC 3502 were expressed by using either an Escherichia coli or a C. botulinum expression system. Polyclonal antibodies against individual orfX cluster proteins were prepared by immunizing a rabbit and mice against the expressed proteins. Antibodies were then utilized as probes to determine which of the A2 orfX cluster genes were expressed in the native A2 culture. N-terminal protein sequencing was also employed to specifically detect ORFX2. Results showed that all of the neurotoxin cluster proteins, except ORFX1, were expressed in the A2 culture. A BoNT/A2 toxin complex (TC) was purified which showed that C. botulinum A2 formed a medium-size (300-kDa) TC composed of BoNT/A2 and NTNH without any of the other OrfX cluster proteins. NTNH subtype-specific immunoreactivity was also discovered, allowing for the differentiation of subtypes based on cluster proteins associated with BoNT.
Biochemical and Biophysical Research Communications | 2011
Sabine Pellett; Zhong-wei Du; Christina L. Pier; William H. Tepp; Su-Chun Zhang; Eric A. Johnson
Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA.
mSphere | 2016
Sabine Pellett; William H. Tepp; Marite Bradshaw; Suzanne R. Kalb; Janet K. Dykes; Guangyun Lin; Erin M. Nawrocki; Christina L. Pier; John R. Barr; Susan E. Maslanka; Eric A. Johnson
Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a “treatment-resistant” and highly potent toxin. However, the toxin’s chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons. ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a “treatment-resistant” and highly potent toxin. However, the toxin’s chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons.