Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guangyun Lin is active.

Publication


Featured researches published by Guangyun Lin.


PLOS Pathogens | 2010

SV2 mediates entry of tetanus neurotoxin into central neurons.

Felix L. Yeh; Min Dong; Jun Yao; William H. Tepp; Guangyun Lin; Eric A. Johnson; Edwin R. Chapman

Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons.


Infection and Immunity | 2013

Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro

Regina Clare Meyer Whitemarsh; William H. Tepp; Marite Bradshaw; Guangyun Lin; Christina L. Pier; Jacob M. Scherf; Eric A. Johnson; Sabine Pellett

ABSTRACT Botulinum neurotoxins (BoNTs) are synthesized by Clostridium botulinum and exist as seven immunologically distinct serotypes designated A through G. For most serotypes, several subtypes have now been described based on nominal differences in the amino acid sequences. BoNT/A1 is the most well-characterized subtype of the BoNT/A serotype, and many of its properties, including its potency, its prevalence as a food poison, and its utility as a pharmaceutical, have been thoroughly studied. In contrast, much remains unknown of the other BoNT/A subtypes. In this study, BoNT/A subtype 1 (BoNT/A1) to BoNT/A5 were characterized utilizing a mouse bioassay, an in vitro cleavage assay, and several neuronal cell-based assays. The data indicate that BoNT/A1 to -5 have distinct in vitro and in vivo toxicological properties and that, unlike those for BoNT/A1, the neuronal and mouse results for BoNT/A2 to -5 do not correlate with their enzymatic activity. These results indicate that BoNT/A1 to -5 have distinct characteristics, which are of importance for a greater understanding of botulism and for pharmaceutical applications.


Applied and Environmental Microbiology | 2008

Analysis of Neurotoxin Cluster Genes in Clostridium botulinum Strains Producing Botulinum Neurotoxin Serotype A Subtypes

Mark J. Jacobson; Guangyun Lin; Brian H. Raphael; Joanne D. Andreadis; Eric A. Johnson

ABSTRACT Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA− Orfx+ A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA− Orfx+ A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.


FEBS Letters | 2011

Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1.

Christina L. Pier; Chen Chen; William H. Tepp; Guangyun Lin; Kim D. Janda; Joseph T. Barbieri; Sabine Pellett; Eric A. Johnson

Botulinum neurotoxins (BoNTs), the causative agent of human botulism, are the most potent naturally occurring toxins known. BoNT/A1, the most studied BoNT, is also used as an important biopharmaceutical. In this study, the biological activity of BoNT/A1 is compared to that of BoNT/A2 using neuronal cell models. The data obtained indicate faster and increased intoxication of neuronal cells by BoNT/A2 than BoNT/A1, and that the mechanism underlying this increased toxicity is faster and more efficient cell entry that is independent of ganglioside binding. These results have important implications for the development of new BoNT based therapeutics and BoNT countermeasures.


Microbiology | 2008

Phylogenetic Analysis of Clostridium botulinum Type A by Multi-Locus Sequence Typing

Mark J. Jacobson; Guangyun Lin; Thomas S. Whittam; Eric A. Johnson

The genus Clostridium comprises a heterogeneous group of organisms for which the phylogeny and evolutionary relationships are poorly understood. The elucidation of these evolutionary relationships necessitates the use of experimental methods that can distinguish Clostridium lineages that are time and cost effective, and can be accurately and reproducibly employed in different laboratories. Multi-locus sequence typing (MLST) has been successfully used as a reproducible and discriminating system in the study of eukaryotic and prokaryotic evolutionary biology, and for strain typing of various bacteria. In this study, MLST was applied to evaluate the evolutionary lineages in the serotype A group of Clostridium botulinum. C. botulinum type A has recently been shown to produce multiple subtypes, suggesting that it is not monophyletic as previously reported, but comprises distinct lineages. For MLST analysis, we initially evaluated 14 housekeeping genes (gapdh, tuf, sod, oppB, hsp60, dnaE, aroE, pta, 23S rDNA, aceK, rpoB, 16S rDNA, mdh and recA) for amplification and sequence analysis. In the first phase of the analysis, 30 C. botulinum type A strains producing botulinum neurotoxin subtypes A1-A4 were examined. Results of this pilot study suggested that seven of the genes (mdh, aceK, rpoB, aroE, hsp60, oppB and recA) could be used for elucidation of evolutionary lineages and strain typing. These seven housekeeping genes were successfully applied for the elucidation of lineages for 73 C. botulinum type A strains, which resulted in 24 distinct sequence types. This strategy should be applicable to phylogenetic studies and typing of other C. botulinum serotypes and Clostridium species.


Applied and Environmental Microbiology | 2010

Expression of the Clostridium botulinum A2 Neurotoxin Gene Cluster Proteins and Characterization of the A2 Complex

Guangyun Lin; William H. Tepp; Christina L. Pier; Mark J. Jacobson; Eric A. Johnson

ABSTRACT Clostridium botulinum subtype A2 possesses a botulinum neurotoxin type A (BoNT/A) gene cluster consisting of an orfX cluster containing open reading frames (ORFs) of unknown functions. To better understand the association between the BoNT/A2 complex proteins, first, the orfX cluster proteins (ORFX1, ORFX3, P47, and the middle part of NTNH) from C. botulinum A2 strain Kyoto F and NTNH of A1 strain ATCC 3502 were expressed by using either an Escherichia coli or a C. botulinum expression system. Polyclonal antibodies against individual orfX cluster proteins were prepared by immunizing a rabbit and mice against the expressed proteins. Antibodies were then utilized as probes to determine which of the A2 orfX cluster genes were expressed in the native A2 culture. N-terminal protein sequencing was also employed to specifically detect ORFX2. Results showed that all of the neurotoxin cluster proteins, except ORFX1, were expressed in the A2 culture. A BoNT/A2 toxin complex (TC) was purified which showed that C. botulinum A2 formed a medium-size (300-kDa) TC composed of BoNT/A2 and NTNH without any of the other OrfX cluster proteins. NTNH subtype-specific immunoreactivity was also discovered, allowing for the differentiation of subtypes based on cluster proteins associated with BoNT.


Environmental Science & Technology | 2013

Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes.

Chan Lan Chun; Urs Ochsner; Muruleedhara N. Byappanahalli; Richard L. Whitman; William H. Tepp; Guangyun Lin; Eric A. Johnson; Julie Peller; Michael J. Sadowsky

Avian botulism, a paralytic disease of birds, often occurs on a yearly cycle and is increasingly becoming more common in the Great Lakes. Outbreaks are caused by bird ingestion of neurotoxins produced by Clostridium botulinum, a spore-forming, gram-positive, anaerobe. The nuisance, macrophytic, green alga Cladophora (Chlorophyta; mostly Cladophora glomerata L.) is a potential habitat for the growth of C. botulinum. A high incidence of botulism in shoreline birds at Sleeping Bear Dunes National Lakeshore (SLBE) in Lake Michigan coincides with increasingly massive accumulations of Cladophora in nearshore waters. In this study, free-floating algal mats were collected from SLBE and other shorelines of the Great Lakes between June and October 2011. The abundance of C. botulinum in algal mats was quantified and the type of botulism neurotoxin (bont) genes associated with this organism were determined by using most-probable-number PCR (MPN-PCR) and five distinct bont gene-specific primers (A, B, C, E, and F). The MPN-PCR results showed that 16 of 22 (73%) algal mats from the SLBE and 23 of 31(74%) algal mats from other shorelines of the Great Lakes contained the bont type E (bont/E) gene. C. botulinum was present up to 15000 MPN per gram dried algae based on gene copies of bont/E. In addition, genes for bont/A and bont/B, which are commonly associated with human diseases, were detected in a few algal samples. Moreover, C. botulinum was present as vegetative cells rather than as dormant spores in Cladophora mats. Mouse toxin assays done using supernatants from enrichment of Cladophora containing high densities of C. botulinum (>1000 MPN/g dried algae) showed that Cladophora-borne C. botulinum were toxin-producing species (BoNT/E). Our results indicate that Cladophora provides a habitat for C. botulinum, warranting additional studies to better understand the relationship between this bacterium and the alga, and how this interaction potentially contributes to botulism outbreaks in birds.


Applied and Environmental Microbiology | 2011

Purification, Modeling, and Analysis of Botulinum Neurotoxin Subtype A5 (BoNT/A5) from Clostridium botulinum Strain A661222

Mark J. Jacobson; Guangyun Lin; William H. Tepp; Jérôme Dupuy; Pål Stenmark; Raymond C. Stevens; Eric A. Johnson

ABSTRACT A Clostridium botulinum type A strain (A661222) in our culture collection was found to produce the botulinum neurotoxin subtype A5 (BoNT/A5). Its neurotoxin gene was sequenced to determine its degree of similarity to available sequences of BoNT/A5 and the well-studied BoNT/A1. Thirty-six amino acid differences were observed between BoNT/A5 and BoNT/A1, with the predominant number being located in the heavy chain. The amino acid chain of the BoNT/A from the A661222 strain was superimposed over the crystal structure of the known structure of BoNT/A1 to assess the potential significance of these differences—specifically how they would affect antibody neutralization. The BoNT/A5 neurotoxin was purified to homogeneity and evaluated for certain properties, including specific toxicity and antibody neutralization. This study reports the first purification of BoNTA5 and describes distinct differences in properties between BoNT/A5 and BoNT/A1.


Applied and Environmental Microbiology | 2012

Purification and Characterization of a Novel Subtype A3 Botulinum Neurotoxin

William H. Tepp; Guangyun Lin; Eric A. Johnson

ABSTRACT Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are of considerable importance due to their being the cause of human and animal botulism, their potential as bioterrorism agents, and their utility as important pharmaceuticals. Type A is prominent due to its high toxicity and long duration of action. Five subtypes of type A BoNT are currently recognized; BoNT/A1, -/A2, and -/A5 have been purified, and their properties have been studied. BoNT/A3 is intriguing because it is not effectively neutralized by polyclonal anti-BoNT/A1 antibodies, and thus, it may potentially replace BoNT/A1 for patients who have become refractive to treatment with BoNT/A1 due to antibody formation or other modes of resistance. Purification of BoNT/A3 has been challenging because of its low levels of production in culture and the need for innovative purification procedures. In this study, modified Mueller-Miller medium was used in place of traditional toxin production medium (TPM) to culture C. botulinum A3 (CDC strain) and boost toxin production. BoNT/A3 titers were at least 10-fold higher than those produced in TPM. A purification method was developed to obtain greater than 95% pure BoNT/A3. The specific toxicity of BoNT/A3 as determined by mouse bioassay was 5.8 × 107 50% lethal doses (LD50)/mg. Neutralization of BoNT/A3 toxicity by a polyclonal anti-BoNT/A1 antibody was approximately 10-fold less than the neutralization of BoNT/A1 toxicity. In addition, differences in symptoms were observed between mice that were injected with BoNT/A3 and those that were injected with BoNT/A1. These results indicate that BoNT/A3 has novel biochemical and pharmacological properties compared to those of other subtype A toxins.


mSphere | 2016

Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain

Sabine Pellett; William H. Tepp; Marite Bradshaw; Suzanne R. Kalb; Janet K. Dykes; Guangyun Lin; Erin M. Nawrocki; Christina L. Pier; John R. Barr; Susan E. Maslanka; Eric A. Johnson

Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a “treatment-resistant” and highly potent toxin. However, the toxin’s chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons. ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a “treatment-resistant” and highly potent toxin. However, the toxin’s chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons.

Collaboration


Dive into the Guangyun Lin's collaboration.

Top Co-Authors

Avatar

Eric A. Johnson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

William H. Tepp

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christina L. Pier

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sabine Pellett

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marite Bradshaw

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Hongrui Jiang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark J. Jacobson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David J. Beebe

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chase M. Fredrick

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge