Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Buchanan is active.

Publication


Featured researches published by Christina M. Buchanan.


Xenotransplantation | 2007

Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation

Robert Bartlett Elliott; Livia Escobar; Paul Tan; Maria Muzina; Sahar Zwain; Christina M. Buchanan

Abstract: Background:  The long‐term viability and function of transplanted encapsulated neonatal porcine islets was examined in a diabetic patient. Methods and results: A 41‐yr‐old Caucasian male with type 1 diabetes for 18 yr was given an intraperitoneal transplant of alginate‐encapsulated porcine islets at the dose of 15 000 islet equivalents (IEQs)/kg bodyweight (total dose 1 305 000 IEQs) via laparoscopy. By 12 weeks following the transplant, his insulin dose was significantly reduced by 30% (P = 0.0001 by multiple regression tests) from 53 units daily prior to transplant. The insulin dose returned to the pre‐transplant level at week 49. Improvement in glycaemic control continued as reflected by total glycated haemoglobin of 7.8% at 14 months from a pre‐transplant level of 9.3%. Urinary porcine C‐peptide peaked at 4 months (9.5 ng/ml) and remained detectable for 11 months (0.6 ng/ml). The patient was followed as part of a long‐term microbiologic monitoring programme which subsequently showed no evidence of porcine viral or retroviral infection. At laparoscopy 9.5 yr after transplantation, abundant nodules were seen throughout the peritoneum. Biopsies of the nodules showed opacified capsules containing cell clusters that stained as live cells under fluorescence microscopy. Immunohistology noted sparse insulin and moderate glucagon staining cells. The retrieved capsules produced a small amount of insulin when placed in high glucose concentrations in vitro. An oral glucose tolerance test induced a small rise in serum of immuno‐reactive insulin, identified as porcine by reversed phase high pressure liquid chromatography. Conclusion: This form of xenotransplantation treatment has the potential for sustained benefit in human type 1 diabetics.


Biochemical Journal | 2011

A drug targeting only p110α can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types

Stephen M.F. Jamieson; Jack U. Flanagan; Sharada Kolekar; Christina M. Buchanan; Jackie D. Kendall; Woo-Jeong Lee; Gordon W. Rewcastle; William A. Denny; Ripudaman Singh; James M. J. Dickson; Bruce C. Baguley; Peter R. Shepherd

Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.


Brain Behavior and Immunity | 2012

A brief relaxation intervention reduces stress and improves surgical wound healing response: a randomised trial.

Elizabeth Broadbent; Arman Kahokehr; Roger J. Booth; Janine Thomas; John A. Windsor; Christina M. Buchanan; Benjamin Robert Wheeler; Tarik Sammour; Andrew G. Hill

Psychological stress has been shown to impair wound healing, but experimental research in surgical patients is lacking. This study investigated whether a brief psychological intervention could reduce stress and improve wound healing in surgical patients. This randomised controlled trial was conducted at a surgical centre. Inclusion criteria were English-speaking patients over 18 years booked to undergo elective laparoscopic cholecystectomy; exclusion criteria were cancellation of surgery, medical complications, and refusal of consent. Seventy five patients were randomised and 15 patients were excluded; 60 patients completed the study (15 male, 45 female). Participants were randomised to receive standard care or standard care plus a 45-min psychological intervention that included relaxation and guided imagery with take-home relaxation CDs for listening to for 3 days before and 7 days after surgery. In both groups ePTFE tubes were inserted during surgery and removed at 7 days after surgery and analysed for hydroxyproline as a measure of collagen deposition and wound healing. Change in perceived stress from before surgery to 7-day follow-up was assessed using questionnaires. Intervention group patients showed a reduction in perceived stress compared with the control group, controlling for age. Patients in the intervention group had higher hydroxyproline deposition in the wound than did control group patients (difference in means 0.35, 95% CI 0.66-0.03; t(43)=2.23, p=0.03). Changes in perceived stress were not associated with hydroxyproline deposition. A brief relaxation intervention prior to surgery can reduce stress and improve the wound healing response in surgical patients. The intervention may have particular clinical application for those at risk of poor healing following surgery.


Journal of Medicinal Chemistry | 2011

Synthesis and Biological Evaluation of Novel Analogues of the Pan Class I Phosphatidylinositol 3-Kinase (PI3K) Inhibitor 2-(Difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474)

Gordon W. Rewcastle; Swarna A. Gamage; Jack U. Flanagan; Raphaël Frédérick; William A. Denny; Bruce C. Baguley; Philip Kestell; Ripudaman Singh; Jackie D. Kendall; Elaine S. Marshall; Claire L. Lill; Woo-Jeong Lee; Sharada Kolekar; Christina M. Buchanan; Stephen M.F. Jamieson; Peter R. Shepherd

A structure-activity relationship (SAR) study of the pan class I PI 3-kinase inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474) identified substitution at the 4 and 6 positions of the benzimidazole ring as having significant effects on the potency of substituted derivatives. The 6-amino-4-methoxy analogue displayed a greater than 1000-fold potency enhancement over the corresponding 6-aza-4-methoxy analogue against all three class Ia PI 3-kinase enzymes (p110α, p110β, and p110δ) and also displayed significant potency against two mutant forms of the p110α isoform (H1047R and E545K). This compound was also evaluated in vivo against a U87MG human glioblastoma tumor xenograft model in Rag1(-/-) mice, and at a dose of 50 mg/kg given by ip injection at a qd × 10 dosing schedule it dramatically reduced cancer growth by 81% compared to untreated controls.


Biochemical Journal | 2010

The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: A potential role for defective chaperone biology in Type 2 diabetes

Vita Chien; Jacqueline F. Aitken; Shaoping Zhang; Christina M. Buchanan; Anthony J. R. Hickey; Thomas Brittain; Garth J. S. Cooper; Kerry M. Loomes

Misfolding of the islet β-cell peptide hA (human amylin) into β-sheet-containing oligomers is linked to β-cell apoptosis and the pathogenesis of T2DM (Type 2 diabetes mellitus). In the present study, we have investigated the possible effects on hA misfolding of the chaperones HSP (heat-shock protein) 70, GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) and HSP40/DnaJ. We demonstrate that hA underwent spontaneous time-dependent β-sheet formation and aggregation by thioflavin-T fluorescence in solution, whereas rA (rat amylin) did not. HSP70, GRP78/BiP and HSP40/DnaJ each independently suppressed hA misfolding. Maximal molar protein/hA ratios at which chaperone activity was detected were 1:200 (HSP70, HSP40/DnaJ and GRP78/BiP). By contrast, none of the chaperones modified the secondary structure of rA. hA, but not rA, was co-precipitated independently with HSP70 and GRP78/BiP by anti-amylin antibodies. As these effects occur at molar ratios consistent with chaperone binding to relatively rare misfolded hA species, we conclude that HSP70 and GRP78/BiP can detect and bind misfolded hA oligomers, thereby effectively protecting hA against bulk misfolding and irreversible aggregation. Defective β-cell chaperone biology could contribute to hA misfolding and initiation of apoptosis in T2DM.


Journal of Proteome Research | 2009

Proteins Associated with Immunopurified Granules from a Model Pancreatic Islet β-Cell System: Proteomic Snapshot of an Endocrine Secretory Granule

Anthony J. R. Hickey; Joshua Bradley; Gretchen L. Skea; Martin Middleditch; Christina M. Buchanan; Anthony R. J. Phillips; Garth J. S. Cooper

beta-Cell granules contain proteins involved in fuel regulation, which when altered, contribute to metabolic disorders including diabetes mellitus. We analyzed proteins present in purified granules from the INS-1E beta-cell model. Fifty-one component proteins were identified by LC-MS/MS including hormones, granins, protein processing components, cellular trafficking components, enzymes implicated in cellular metabolism and chaperone proteins. These findings may increase understanding of granule secretion and the processes leading to protein aggregation and beta-cell death in type-2 diabetes.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

The proteome of rodent mesenteric lymph

Anubhav Mittal; Martin Middleditch; Katya Ruggiero; Christina M. Buchanan; Mia Jüllig; Benjamin Loveday; Garth J. S. Cooper; John A. Windsor; Anthony R. J. Phillips

Mesenteric lymph contributes to normal homeostasis and has an emerging role in the pathogenesis of multiple organ dysfunction syndrome. The aim of this study was to define the proteome of normal rodent mesenteric lymph in the fasted and fed states. Eight male Wistar rats fed a standard rodent diet were randomized to two groups. Group 1 (fasted, n = 4) were fasted for 24 h before anesthetized collection of mesenteric lymph. Group 2 (fed, n = 4) were allowed ad libitum access to food before lymph collection. Mesenteric lymph was subjected to proteomic analysis using iTRAQ and liquid chromatography-tandem mass spectrometry (LC-MS/MS). One hundred fifty proteins, including 26 hypothetical proteins, were identified in this study. All proteins were identified in lymph from both the fasted and fed states. The relative distribution profiles of protein functional classes in the mesenteric lymph differed significantly from that reported for plasma. The most abundant classes identified in lymph were protease inhibitors (16%) and proteins related to innate immunity (12%). In conclusion, this study provides the first detailed description of the normal mesenteric lymph proteome in the fed and fasted states using iTRAQ and LC-MS/MS.


Bioorganic & Medicinal Chemistry | 2012

Novel pyrazolo[1,5-a]pyridines as p110α-selective PI3 kinase inhibitors: Exploring the benzenesulfonohydrazide SAR

Jackie D. Kendall; Anna C. Giddens; Kit Yee Tsang; Raphaël Frédérick; Elaine S. Marshall; Ripudaman Singh; Claire L. Lill; Woo-Jeong Lee; Sharada Kolekar; Mindy Chao; Alisha Malik; Shuqiao Yu; Claire Chaussade; Christina M. Buchanan; Gordon W. Rewcastle; Bruce C. Baguley; Jack U. Flanagan; Stephen M.F. Jamieson; William A. Denny; Peter R. Shepherd

Structure-activity relationship studies of the pyrazolo[1,5-a]pyridine class of PI3 kinase inhibitors show that substitution off the hydrazone nitrogen and replacement of the sulfonyl both gave a loss of p110α selectivity, with the exception of an N-hydroxyethyl analogue. Limited substitutions were tolerated around the phenyl ring; in particular the 2,5-substitution pattern was important for PI3 kinase activity. The N-hydroxyethyl compound also showed good inhibition of cell proliferation and inhibition of phosphorylation of Akt/PKB, a downstream marker of PI3 kinase activity. It had suitable pharmacokinetics for evaluation in vivo, and showed tumour growth inhibition in two human tumour cell lines in xenograft studies. This work has provided suggestions for the design of more soluble analogues.


Clinical Science | 2012

DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular

Christina M. Buchanan; Jen-Hsing Shih; Jonathan W. Astin; Gordon W. Rewcastle; Jack U. Flanagan; Philip S. Crosier; Peter R. Shepherd

The flavone acetic acid derivative DMXAA [5,6-dimethylXAA (xanthenone-4-acetic acid), Vadimezan, ASA404] is a drug that displayed vascular-disrupting activity and induced haemorrhagic necrosis and tumour regression in pre-clinical animal models. Both immune-mediated and non-immune-mediated effects contributed to the tumour regression. The vascular disruption was less in human tumours, with immune-mediated effects being less prominent, but nonetheless DMXAA showed promising effects in Phase II clinical trials in non-small-cell lung cancer. However, these effects were not replicated in Phase III clinical trials. It has been difficult to understand the differences between the pre-clinical findings and the later clinical trials as the molecular targets for the agent have never been clearly established. To investigate the mechanism of action, we sought to determine whether DMXAA might target protein kinases. We found that, at concentrations achieved in blood during clinical trials, DMXAA has inhibitory effects against several kinases, with most potent effects being on members of the VEGFR (vascular endothelial growth factor receptor) tyrosine kinase family. Some analogues of DMXAA were even more effective inhibitors of these kinases, in particular 2-MeXAA (2-methylXAA) and 6-MeXAA (6-methylXAA). The inhibitory effects were greatest against VEGFR2 and, consistent with this, we found that DMXAA, 2-MeXAA and 6-MeXAA were able to block angiogenesis in zebrafish embryos and also inhibit VEGFR2 signalling in HUVECs (human umbilical vein endothelial cells). Taken together, these results indicate that at least part of the effects of DMXAA are due to it acting as a multi-kinase inhibitor and that the anti-VEGFR activity in particular may contribute to the non-immune-mediated effects of DMXAA on the vasculature.


Bioorganic & Medicinal Chemistry | 2012

Discovery of pyrazolo[1,5-a]pyridines as p110α-selective PI3 kinase inhibitors

Jackie D. Kendall; Patrick D. O'Connor; Andrew J. Marshall; Raphaël Frédérick; Elaine S. Marshall; Claire L. Lill; Woo-Jeong Lee; Sharada Kolekar; Mindy Chao; Alisha Malik; Shuqiao Yu; Claire Chaussade; Christina M. Buchanan; Gordon W. Rewcastle; Bruce C. Baguley; Jack U. Flanagan; Stephen M.F. Jamieson; William A. Denny; Peter R. Shepherd

We have made a novel series of pyrazolo[1,5-a]pyridines as PI3 kinase inhibitors, and demonstrated their selectivity for the p110α isoform over the other Class Ia PI3 kinases. We investigated the SAR around the pyrazolo[1,5-a]pyridine ring system, and found compound 5x to be a particularly potent example (p110α IC(50) 0.9nM). This compound inhibits cell proliferation and phosphorylation of Akt/PKB, a downstream marker of PI3 kinase activity, and showed in vivo activity in an HCT-116 human xenograft model.

Collaboration


Dive into the Christina M. Buchanan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge