Gordon W. Rewcastle
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gordon W. Rewcastle.
Biochemical Journal | 2007
Claire Chaussade; Gordon W. Rewcastle; Jackie D. Kendall; William A. Denny; Kitty Cho; Line M. Grønning; Mei Ling Chong; Sasha H. Anagnostou; Shaun P. Jackson; Nathalie Daniele; Peter R. Shepherd
Recent genetic knock-in and pharmacological approaches have suggested that, of class IA PI3Ks (phosphatidylinositol 3-kinases), it is the p110alpha isoform (PIK3CA) that plays the predominant role in insulin signalling. We have used isoform-selective inhibitors of class IA PI3K to dissect further the roles of individual p110 isoforms in insulin signalling. These include a p110alpha-specific inhibitor (PIK-75), a p110alpha-selective inhibitor (PI-103), a p110beta-specific inhibitor (TGX-221) and a p110delta-specific inhibitor (IC87114). Although we find that p110alpha is necessary for insulin-stimulated phosphorylation of PKB (protein kinase B) in several cell lines, we find that this is not the case in HepG2 hepatoma cells. Inhibition of p110beta or p110delta alone was also not sufficient to block insulin signalling to PKB in these cells, but, when added in combination with p110alpha inhibitors, they are able to significantly attenuate insulin signalling. Surprisingly, in J774.2 macrophage cells, insulin signalling to PKB was inhibited to a similar extent by inhibitors of p110alpha, p110beta or p110delta. These results provide evidence that p110beta and p110delta can play a role in insulin signalling and also provide the first evidence that there can be functional redundancy between p110 isoforms. Further, our results indicate that the degree of functional redundancy is linked to the relative levels of expression of each isoform in the target cells.
Biochemical Journal | 2011
Stephen M.F. Jamieson; Jack U. Flanagan; Sharada Kolekar; Christina M. Buchanan; Jackie D. Kendall; Woo-Jeong Lee; Gordon W. Rewcastle; William A. Denny; Ripudaman Singh; James M. J. Dickson; Bruce C. Baguley; Peter R. Shepherd
Genetic alterations in PI3K (phosphoinositide 3-kinase) signalling are common in cancer and include deletions in PTEN (phosphatase and tensin homologue deleted on chromosome 10), amplifications of PIK3CA and mutations in two distinct regions of the PIK3CA gene. This suggests drugs targeting PI3K, and p110α in particular, might be useful in treating cancers. Broad-spectrum inhibition of PI3K is effective in preventing growth factor signalling and tumour growth, but suitable inhibitors of p110α have not been available to study the effects of inhibiting this isoform alone. In the present study we characterize a novel small molecule, A66, showing the S-enantiomer to be a highly specific and selective p110α inhibitor. Using molecular modelling and biochemical studies, we explain the basis of this selectivity. Using a panel of isoform-selective inhibitors, we show that insulin signalling to Akt/PKB (protein kinase B) is attenuated by the additive effects of inhibiting p110α/p110β/p110δ in all cell lines tested. However, inhibition of p110α alone was sufficient to block insulin signalling to Akt/PKB in certain cell lines. The responsive cell lines all harboured H1047R mutations in PIK3CA and have high levels of p110α and class-Ia PI3K activity. This may explain the increased sensitivity of these cells to p110α inhibitors. We assessed the activation of Akt/PKB and tumour growth in xenograft models and found that tumours derived from two of the responsive cell lines were also responsive to A66 in vivo. These results show that inhibition of p110α alone has the potential to block growth factor signalling and reduce growth in a subset of tumours.
Journal of Medicinal Chemistry | 2002
Swarna A. Gamage; Julie A. Spicer; Gordon W. Rewcastle; John Milton; Sukhjit Sohal; Wendy Dangerfield; Prakash Mistry; Nigel Vicker; Peter Charlton; William A. Denny
Heterocyclic phenazinecarboxamides were prepared by condensation of aminoheterocycles and 2-halo-3-nitrobenzoic acids, followed by reductive ring closure and amidation. They showed similar inhibition of paired cell lines that underexpressed topo II or overexpressed P-glycoprotein, indicating a non topo II mechanism of cytotoxicity and indifference to P-glycoprotein mediated multidrug resistance. Compounds with a fused five-membered heterocyclic ring were generally less potent than the pyrido[4,3-a]phenazines. A 4-methoxypyrido[4,3-a]phenazine (IC(50)s 2.5-26 nM) gave modest (ca. 5 day) growth delays in H69/P xenografts with oral dosing.
Journal of Biological Chemistry | 2007
Simone M. Schoenwaelder; Akiko Ono; Sharelle A. Sturgeon; Siew Mei Chan; Pierre Mangin; Mhairi J. Maxwell; Shannon Turnbull; Megha Mulchandani; Karen E. Anderson; Gilles Kauffenstein; Gordon W. Rewcastle; Jackie D. Kendall; Christian Gachet; Hatem H. Salem; Shaun P. Jackson
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110β and p110γ) have been implicated in Gi-dependent integrin αIIbβ3 regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110β is primarily responsible for Gi-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin αIIbβ3 activation in p110γ-/- platelets was not associated with alterations in the levels of PI(3,4)P2 or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110γ principally regulated integrin αIIbβ3 activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110γ, led to a major reduction in integrin αIIbβ3 activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110γ in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110β and p110γ is critical for P2Y12/Gi-dependent integrinαIIbβ3 regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.
Biochemical Pharmacology | 1997
David W. Fry; James M. Nelson; Veronika Slintak; Paul R. Keller; Gordon W. Rewcastle; William A. Denny; Hairong Zhou; Alexander J. Bridges
The tyrosine kinase inhibitors PD 69896, 153717, and 158780, which belong to the chemical class 4-[ar(alk)ylamino]pyridopyrimidines, have been characterized with respect to enzymology, target specificity, and antiproliferative effects in tumor cells. These compounds were competitive inhibitors with respect to ATP against purified epidermal growth factor (EGF) receptor tyrosine kinase and inhibited EGF receptor autophosphorylation in A431 human epidermoid carcinoma with IC50 values of 2085, 110, and 13 nM, respectively. Onset of inhibition was immediate once cells were exposed to these compounds, whereas recovery of receptor autophosphorylation activity after the cells were washed free of the compound was dependent on inhibitory potency. Thus, full activity returned immediately after removal of PD 69896 but required 8 hr after exposure to PD 158780. PD 158780 was highly specific for the EGF receptor in Swiss 3T3 fibroblasts, inhibiting EGF-dependent receptor autophosphorylation and thymidine incorporation at low nanomolar concentrations while requiring micromolar levels for platelet-derived growth factor- and basic fibroblast growth factor-dependent processes. PD 158780 inhibited heregulin-stimulated phosphorylation in the SK-BR-3 and MDA-MB-453 breast carcinomas with IC50 values of 49 and 52 nM, respectively, suggesting that the compound was active against other members of the EGF receptor family. The antiproliferative effects of this series of compounds against A431 cells correlated precisely with the inhibitory potency against EGF receptor autophosphorylation. PD 158780 reduced clone formation in soft agar of fibroblasts transformed by EGF, EGF receptor, or the neu oncogene but not ras or raf, further demonstrating its high degree of specificity. Finally, this compound was active against clone formation in several breast tumors having different expression patterns of the erbB family, indicating an anticancer utility in tumors expressing these receptors.
Journal of Medicinal Chemistry | 2011
Gordon W. Rewcastle; Swarna A. Gamage; Jack U. Flanagan; Raphaël Frédérick; William A. Denny; Bruce C. Baguley; Philip Kestell; Ripudaman Singh; Jackie D. Kendall; Elaine S. Marshall; Claire L. Lill; Woo-Jeong Lee; Sharada Kolekar; Christina M. Buchanan; Stephen M.F. Jamieson; Peter R. Shepherd
A structure-activity relationship (SAR) study of the pan class I PI 3-kinase inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474) identified substitution at the 4 and 6 positions of the benzimidazole ring as having significant effects on the potency of substituted derivatives. The 6-amino-4-methoxy analogue displayed a greater than 1000-fold potency enhancement over the corresponding 6-aza-4-methoxy analogue against all three class Ia PI 3-kinase enzymes (p110α, p110β, and p110δ) and also displayed significant potency against two mutant forms of the p110α isoform (H1047R and E545K). This compound was also evaluated in vivo against a U87MG human glioblastoma tumor xenograft model in Rag1(-/-) mice, and at a dose of 50 mg/kg given by ip injection at a qd × 10 dosing schedule it dramatically reduced cancer growth by 81% compared to untreated controls.
Cancer Biology & Therapy | 2011
Euphemia Leung; Ji Eun Kim; Gordon W. Rewcastle; Graeme J. Finlay; Bruce C. Baguley
Background: Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells. Methods: We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (3 sub-lines) or in estrogen free medium (2 sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK. Results: The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin. Conclusion: Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway. See commentary: Overcoming resistance: Targeting the PI3K/mTOR pathway in endocrine refractory breast cancer
Biochemical and Biophysical Research Communications | 2009
Claire Chaussade; Kitty Cho; Claire Mawson; Gordon W. Rewcastle; Peter R. Shepherd
PIK3CA codes for the p110alpha isoform of class-IA PI 3-kinase and oncogenic mutations in the helical domain and kinase domain are common in several cancers. We studied the biochemical properties of a common helical domain mutant (E545K) and a common kinase domain mutant (H1047R). Both retain the ability to autophosphorylate Ser608 of p85alpha and are also inhibited by a range of PI 3-kinase inhibitors (Wortmannin, LY294002, PI-103 and PIK-75) to a similar extent as WT p110alpha. Both mutants display an increased V(max) but while a PDGF derived diphosphotyrosylpeptide caused an increase in V(max) for WT p85alpha/p110alpha it did not for the E545K variant and actually decreased V(max) for the H1047R variant. Further, the E545K mutant was activated by H-Ras whereas the H1047R mutant was not. Together these results suggest helical domain mutants are in a state mimicking activation by growth factors whereas kinase domain mutants mimic the state activated by H-Ras.
Cancer Chemotherapy and Pharmacology | 1999
Philip Kestell; James W. Paxton; Gordon W. Rewcastle; Ingrid C. Dunlop; Bruce C. Baguley
Abstract 5,6-Dimethylxanthenone-4-acetic acid (DMXAA), an experimental antitumour agent currently undergoing phase I clinical trial, has a maximum tolerated dose (MTD) in male BDF1 mice of 99 μmol/kg. We have found the male Sprague-Dawley rat and the New Zealand White rabbit to have greater tolerance to DMXAA, with MTDs being 990 and 330 μmol/kg, respectively. To investigate the causes of this difference, we measured plasma and urine DMXAA concentrations by high-performance liquid chromatography (HPLC) after single i.v. bolus injections of 99 and 990 μmol/kg in the rat and following a bolus dose of 99 μmol/kg and a 10-min infusion of 330 μmol/kg in the rabbit. Following administration of DMXAA at the MTD in the mouse, rat and rabbit the maximal concentrations were 600, 2,200 and 1,708 μM, respectively, whereas areas under the concentration-time curves were 2,400, 19,000 and 2,400 μMh, respectively, for unchanged DMXAA. Data obtained for mice and rabbits were satisfactorily fitted to a two-compartment model with Michaelis-Menten kinetics. DMXAA was highly bound to plasma proteins, with the highest degree of binding being found in the rabbit. A small proportion of the total dose (7.8%, 0.6% and 12.4%, respectively) was excreted unchanged in urine over 24 h. This proportion increased (to 11.6%, 3.5% and 72.4%, respectively) following alkaline hydrolysis, suggesting the presence of glucuronide metabolites. Examination of rat and mouse urine by HPLC revealed the presence of two metabolites, which were characterized by mass spectrometry and nuclear magnetic resonance to be the acyl glucuronide of DMXAA and 6-(hydroxymethyl)-5-methylxanthenone-4-acetic acid. Thus, both mice and rats metabolise DMXAA by similar pathways. The results demonstrate considerable interspecies variations in tolerance to DMXAA that cannot be explained by differences in pharmacokinetics.
Biochemical Journal | 2012
Greg C. Smith; Wee Kiat Ong; Gordon W. Rewcastle; Jackie D. Kendall; Weiping Han; Peter R. Shepherd
In in vitro studies class-I PI3Ks (phosphoinositide 3-kinases), class-II PI3Ks and mTOR (mammalian target of rapamycin) have all been described as having roles in the regulation of glucose metabolism. The relative role each plays in the normal signalling processes regulating glucose metabolism in vivo is less clear. Knockout and knockin mouse models have provided some evidence that the class-I PI3K isoforms p110α, p110β, and to a lesser extent p110γ, are necessary for processes regulating glucose metabolism and appetite. However, in these models the PI3K activity is chronically reduced. Therefore we analysed the effects of acutely inhibiting PI3K isoforms alone, or PI3K and mTOR, on glucose metabolism and food intake. In the present study impairments in glucose tolerance, insulin tolerance and increased hepatic glucose output were observed in mice treated with the pan-PI3K/mTOR inhibitors PI-103 and NVP-BEZ235. The finding that ZSTK474 has similar effects indicates that these effects are due to inhibition of PI3K rather than mTOR. The p110α-selective inhibitors PIK75 and A66 also induced these phenotypes, but inhibitors of p110β, p110δ or p110γ induced only minor effects. These drugs caused no significant effects on BMR (basal metabolic rate), O2 consumption or water intake, but BEZ235, PI-103 and PIK75 did cause a small reduction in food consumption. Surprisingly, pan-PI3K inhibitors or p110α inhibitors caused reductions in animal movement, although the cause of this is not clear. Taken together these studies provide pharmacological evidence to support a pre-eminent role for the p110α isoform of PI3K in pathways acutely regulating glucose metabolism.