Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Ramirez is active.

Publication


Featured researches published by Christina M. Ramirez.


Nature Communications | 2014

Evidence for henipavirus spillover into human populations in Africa

Olivier Pernet; Bradley S. Schneider; Shannon M. Beaty; Matthew LeBreton; Tatyana E. Yun; Arnold Park; Trevor T. Zachariah; Thomas A. Bowden; Peta L. Hitchens; Christina M. Ramirez; Peter Daszak; Jonna A. K. Mazet; Alexander N. Freiberg; Nathan D. Wolfe; Benhur Lee

Zoonotic transmission of lethal henipaviruses (HNVs) from their natural fruit bat reservoirs to humans has only been reported in Australia and South/Southeast Asia. However, a recent study discovered numerous HNV clades in African bat samples. To determine the potential for HNV spillover events among humans in Africa, here we examine well-curated sets of bat (Eidolon helvum, n=44) and human (n=497) serum samples from Cameroon for Nipah virus (NiV) cross-neutralizing antibodies (NiV-X-Nabs). Using a vesicular stomatitis virus (VSV)-based pseudoparticle seroneutralization assay, we detect NiV-X-Nabs in 48% and 3–4% of the bat and human samples, respectively. Seropositive human samples are found almost exclusively in individuals who reported butchering bats for bushmeat. Seropositive human sera also neutralize Hendra virus and Gh-M74a (an African HNV) pseudoparticles, as well as live NiV. Butchering bat meat and living in areas undergoing deforestation are the most significant risk factors associated with seropositivity. Evidence for HNV spillover events warrants increased surveillance efforts.


PLOS ONE | 2013

Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8+ T cells.

Jennifer P. Chou; Christina M. Ramirez; Jennifer E. Wu; Rita B. Effros

Clinical evaluation of immune reconstitution and health status during HIV-1 infection and anti-retroviral therapy (ART) is largely based on CD4+ T cell counts and viral load, measures that fail to take into account the CD8+ T cell subset, known to show features of accelerated aging in HIV disease. Here, we compare adenosine deaminase (ADA), glucose uptake receptor 1 (GLUT1), and leucine-rich repeat neuronal 3 (LRRN3) to CD38 expression and telomerase activity, two strong predictors of HIV disease progression. Our analysis revealed that reduced ADA, telomerase activity and LRRN3 gene expression were significantly associated with high CD38 and HLA-DR in CD8+ T cells, with % ADA+ cells being the most robust predictor of CD8+ T cell activation. Our results suggest that ADA, LRRN3 and telomerase activity in CD8+ T cells may serve as novel, clinically relevant biomarkers of immune status in HIV-1 infection, specifically by demonstrating the degree to which CD8+ T cells have progressed to the end stage of replicative senescence. Since chronological aging itself leads to the accumulation of senescent CD8+ T cells, the prolonged survival and resultant increased age of the HIV+ population may synergize with the chronic immune activation to exacerbate both immune decline and age-associated pathologies. The identification and future validation of these new biomarkers may lead to fresh immune-based HIV treatments.


Nature Cell Biology | 2016

Medial HOXA genes demarcate haematopoietic stem cell fate during human development

Diana R. Dou; Vincenzo Calvanese; Maria I. Sierra; Andrew Nguyen; Arazin Minasian; Pamela Saarikoski; Rajkumar Sasidharan; Christina M. Ramirez; Jerome A. Zack; Zoran Galic; Hanna Mikkola

Pluripotent stem cells (PSCs) may provide a potential source of haematopoietic stem/progenitor cells (HSPCs) for transplantation; however, unknown molecular barriers prevent the self-renewal of PSC-HSPCs. Using two-step differentiation, human embryonic stem cells (hESCs) differentiated in vitro into multipotent haematopoietic cells that had the CD34+CD38−/loCD90+CD45+GPI-80+ fetal liver (FL) HSPC immunophenotype, but exhibited poor expansion potential and engraftment ability. Transcriptome analysis of immunophenotypic hESC-HSPCs revealed that, despite their molecular resemblance to FL-HSPCs, medial HOXA genes remained suppressed. Knockdown of HOXA7 disrupted FL-HSPC function and caused transcriptome dysregulation that resembled hESC-derived progenitors. Overexpression of medial HOXA genes prolonged FL-HSPC maintenance but was insufficient to confer self-renewal to hESC-HSPCs. Stimulation of retinoic acid signalling during endothelial-to-haematopoietic transition induced the HOXA cluster and other HSC/definitive haemogenic endothelium genes, and prolonged HSPC maintenance in culture. Thus, medial HOXA gene expression induced by retinoic acid signalling marks the establishment of the definitive HSPC fate and controls HSPC identity and function.


Journal of Molecular Biology | 2014

Stable DNA Methylation Boundaries and Expanded Trinucleotide Repeats: Role of DNA Insertions

Anja Naumann; Cornelia Kraus; André T. Hoogeveen; Christina M. Ramirez; Walter Doerfler

The human genome segment upstream of the FMR1 (fragile X mental retardation 1) gene (Xq27.3) contains several genetic signals, among them is a DNA methylation boundary that is located 65-70 CpGs upstream of the CGG repeat. In fragile X syndrome (FXS), the boundary is lost, and the promoter is inactivated by methylation spreading. Here we document boundary stability in spite of critical expansions of the CGG trinucleotide repeat in male or female premutation carriers and in high functioning males (HFMs). HFMs carry a full CGG repeat expansion but exhibit an unmethylated promoter and lack the FXS phenotype. The boundary is also stable in Turner (45, X) females. A CTCF-binding site is located slightly upstream of the methylation boundary and carries a unique G-to-A polymorphism (single nucleotide polymorphism), which occurs 3.6 times more frequently in genomes with CGG expansions. The increased frequency of this single nucleotide polymorphism might have functional significance. In CGG expansions, the CTCF region does not harbor additional mutations. In FXS individuals and often in cells transgenomic for EBV (Epstein Barr Virus) DNA or for the telomerase gene, the large number of normally methylated CpGs in the far-upstream region of the boundary is decreased about 4-fold. A methylation boundary is also present in the human genome segment upstream of the HTT (huntingtin) promoter (4p16.3) and is stable both in normal and Huntington disease chromosomes. Hence, the vicinity of an expanded repeat does not per se compromise methylation boundaries. Methylation boundaries exert an important function as promoter safeguards.


PLOS ONE | 2014

Prostaglandin E2 Promotes Features of Replicative Senescence in Chronically Activated Human CD8+ T Cells

Jennifer P. Chou; Christina M. Ramirez; Danielle M. Ryba; Megha P. Koduri; Rita B. Effros

Prostaglandin E2 (PGE2), a pleiotropic immunomodulatory molecule, and its free radical catalyzed isoform, iso-PGE2, are frequently elevated in the context of cancer and chronic infection. Previous studies have documented the effects of PGE2 on the various CD4+ T cell functions, but little is known about its impact on cytotoxic CD8+ T lymphocytes, the immune cells responsible for eliminating virally infected and tumor cells. Here we provide the first demonstration of the dramatic effects of PGE2 on the progression of human CD8+ T cells toward replicative senescence, a terminal dysfunctional state associated multiple pathologies during aging and chronic HIV-1 infection. Our data show that exposure of chronically activated CD8+ T cells to physiological levels of PGE2 and iso-PGE2 promotes accelerated acquisition of markers of senescence, including loss of CD28 expression, increased expression of p16 cell cycle inhibitor, reduced telomerase activity, telomere shortening and diminished production of key cytotoxic and survival cytokines. Moreover, the CD8+ T cells also produced higher levels of reactive oxygen species, suggesting that the resultant oxidative stress may have further enhanced telomere loss. Interestingly, we observed that even chronic activation per se resulted in increased CD8+ T cell production of PGE2, mediated by higher COX-2 activity, thus inducing a negative feedback loop that further inhibits effector function. Collectively, our data suggest that the elevated levels of PGE2 and iso-PGE2, seen in various cancers and HIV-1 infection, may accelerate progression of CD8+ T cells towards replicative senescence in vivo. Inhibition of COX-2 activity may, therefore, provide a strategy to counteract this effect.


PLOS Pathogens | 2017

In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell "kick" and "kill" in strategy for virus eradication

Matthew D. Marsden; Brian A. Loy; Xiaomeng Wu; Christina M. Ramirez; Adam J. Schrier; Danielle Murray; Akira J. Shimizu; Steven M. Ryckbosch; Katherine E. Near; Tae-Wook Chun; Paul A. Wender; Jerome A. Zack

The ability of HIV to establish a long-lived latent infection within resting CD4+ T cells leads to persistence and episodic resupply of the virus in patients treated with antiretroviral therapy (ART), thereby preventing eradication of the disease. Protein kinase C (PKC) modulators such as bryostatin 1 can activate these latently infected cells, potentially leading to their elimination by virus-mediated cytopathic effects, the host’s immune response and/or therapeutic strategies targeting cells actively expressing virus. While research in this area has focused heavily on naturally-occurring PKC modulators, their study has been hampered by their limited and variable availability, and equally significantly by sub-optimal activity and in vivo tolerability. Here we show that a designed, synthetically-accessible analog of bryostatin 1 is better-tolerated in vivo when compared with the naturally-occurring product and potently induces HIV expression from latency in humanized BLT mice, a proven and important model for studying HIV persistence and pathogenesis in vivo. Importantly, this induction of virus expression causes some of the newly HIV-expressing cells to die. Thus, designed, synthetically-accessible, tunable, and efficacious bryostatin analogs can mediate both a “kick” and “kill” response in latently-infected cells and exhibit improved tolerability, therefore showing unique promise as clinical adjuvants for HIV eradication.


The Journal of Infectious Diseases | 2018

Ebola Virus Neutralizing Antibodies Detectable in Survivors of theYambuku, Zaire Outbreak 40 Years after Infection

Anne W. Rimoin; Kai Lu; Matthew S. Bramble; Imke Steffen; Reena H. Doshi; Nicole A. Hoff; Patrick Mukadi; Bradly P. Nicholson; Vivian H. Alfonso; Gerrard Olinger; Cyrus Sinai; Lauren K Yamamoto; Christina M. Ramirez; Emile Okitolonda Wemakoy; Benoit Kebela Illunga; James Pettitt; James Logue; Richard S. Bennett; Peter B. Jahrling; David L. Heymann; Peter Piot; Jean Jacques Muyembe-Tamfum; Lisa E. Hensley; Graham Simmons

Duration of immunity against Ebola virus among survivors remains unclear. We assessed serological immune profiles and retention of Ebola virus neutralizing antibodies in 14 survivors of the 1976 Yambuku outbreak 40 years postinfection, providing the longest documentation of such measures reported.


Virology | 2018

Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents.

Matthew D. Marsden; Xiaomeng Wu; Sara M. Navab; Brian A. Loy; Adam J. Schrier; Brian A. DeChristopher; Akira J. Shimizu; Clayton T. Hardman; Stephen Ho; Christina M. Ramirez; Paul A. Wender; Jerome A. Zack

HIV latency in resting CD4+ T cell represents a key barrier preventing cure of the infection with antiretroviral drugs alone. Latency reversing agents (LRAs) can activate HIV expression in latently infected cells, potentially leading to their elimination through virus-mediated cytopathic effects, host immune responses, and/or therapeutic strategies targeting cells actively expressing virus. We have recently described several structurally simplified analogs of the PKC modulator LRA bryostatin (termed bryologs) designed to improve synthetic accessibility, tolerability in vivo, and efficacy in inducing HIV latency reversal. Here we report the comparative performance of lead bryologs, including their effects in reducing cell surface expression of HIV entry receptors, inducing proinflammatory cytokines, inhibiting short-term HIV replication, and synergizing with histone deacetylase inhibitors to reverse HIV latency. These data provide unique insights into structure-function relationships between A- and B-ring bryolog modifications and activities in primary cells, and suggest that bryologs represent promising leads for preclinical advancement.


Virology | 2018

Protein S and Gas6 induce efferocytosis of HIV-1-infected cells

Bernadette Anne Chua; Jamie Ann Ngo; Kathy Situ; Christina M. Ramirez; Haruko Nakano; Kouki Morizono

Efferocytosis, the phagocytic clearance of apoptotic cells, can provide host protection against certain types of viruses by mediating phagocytic clearance of infected cells undergoing apoptosis. It is known that HIV-1 induces apoptosis and HIV-1-infected cells are efferocytosed by macrophages, although its molecular mechanisms are unknown. To elucidate the roles that efferocytosis of HIV-1-infected cells play in clearance of infected cells, we sought to identify molecules that mediate these processes. We found that protein S, present in human serum, and its homologue, Gas6, can mediate phagocytosis of HIV-1-infected cells by bridging receptor tyrosine kinase Mer, expressed on macrophages, to phosphatidylserine exposed on infected cells. Efferocytosis of live infected cells was less efficient than dead infected cells; however, a significant fraction of live infected cells were phagocytosed over 12h. Our results suggest that efferocytosis not only removes dead cells, but may also contribute to macrophage removal of live virus producing cells.


PLOS ONE | 2017

Distinct aging profiles of CD8(+)T cells in blood versus gastrointestinal mucosal compartments

Jeffrey Dock; Christina M. Ramirez; Lance E. Hultin; Mary Ann Hausner; Patricia M. Hultin; Julie Elliott; Otto O. Yang; Peter A. Anton; Beth D. Jamieson; Rita B. Effros

A hallmark of human immunosenescence is the accumulation of late-differentiated memory CD8+ T cells with features of replicative senescence, such as inability to proliferate, absence of CD28 expression, shortened telomeres, loss of telomerase activity, enhanced activation, and increased secretion of inflammatory cytokines. Importantly, oligoclonal expansions of these cells are associated with increased morbidity and mortality risk in elderly humans. Currently, most information on the adaptive immune system is derived from studies using peripheral blood, which contains approximately only 2% of total body lymphocytes. However, most lymphocytes reside in tissues. It is not clear how representative blood changes are of the total immune status. This is especially relevant with regard to the human gastrointestinal tract (GALT), a major reservoir of total body lymphocytes (approximately 60%) and an anatomical region of high antigenic exposure. To assess how peripheral blood T cells relate to those in other locations, we compare CD8+ T cells from peripheral blood and the GALT, specifically rectosigmoid colon, in young/middle age, healthy donors, focusing on phenotypic and functional alterations previously linked to senescence in peripheral blood. Overall, our results indicate that gut CD8+ T cells show profiles suggestive of greater differentiation and activation than those in peripheral blood. Specifically, compared to blood from the same individual, the gut contains significantly greater proportions of CD8+ T cells that are CD45RA- (memory), CD28-, CD45RA-CD28+ (early memory), CD45RA-CD28- (late memory), CD25-, HLA-DR+CD38+ (activated) and Ki-67+ (proliferating); ex vivo CD3+ telomerase activity levels are greater in the gut as well. However, gut CD8+ T cells may not necessarily be more senescent, since they expressed significantly lower levels of CD57 and PD-1 on CD45RO+ memory cells, and had in vitro proliferative dynamics similar to that of blood cells. Compartment-specific age-effects in this cohort were evident as well. Blood cells showed a significant increase with age in proportion of HLA-DR+38+, Ki-67+ and CD25+ CD8+ T cells; and an increase in total CD3+ ex-vivo telomerase activity that approached significance. By contrast, the only age-effect seen in the gut was a significant increase in CD45RA- (memory) and concurrent decrease in CD45RA+CD28+ (naïve) CD8+ T cells. Overall, these results indicate dynamics of peripheral blood immune senescence may not hold true in the gut mucosa, underscoring the importance for further study of this immunologically important tissue in evaluating the human immune system, especially in the context of chronic disease and aging.

Collaboration


Dive into the Christina M. Ramirez's collaboration.

Top Co-Authors

Avatar

Jerome A. Zack

University of California

View shared research outputs
Top Co-Authors

Avatar

Rita B. Effros

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn Anastos

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge