Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina M. Warboys is active.

Publication


Featured researches published by Christina M. Warboys.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway

Christina M. Warboys; Amalia de Luca; Narges Amini; Le Luong; Hayley Duckles; Sarah Hsiao; Alex White; Shukti Biswas; Ramzi Khamis; Chuh K. Chong; Wai-Mun Cheung; Spencer J. Sherwin; Martin R. Bennett; Jesús Gil; Justin C. Mason; Dorian O. Haskard; Paul C. Evans

Objective—Although atherosclerosis is associated with systemic risk factors such as age, high cholesterol, and obesity, plaque formation occurs predominately at branches and bends that are exposed to disturbed patterns of blood flow. The molecular mechanisms that link disturbed flow–generated mechanical forces with arterial injury are uncertain. To illuminate them, we investigated the effects of flow on endothelial cell (EC) senescence. Approach and Results—LDLR−/− (low-density lipoprotein receptor−/−) mice were exposed to a high-fat diet for 2 to 12 weeks (or to a normal chow diet as a control) before the assessment of cellular senescence in aortic ECs. En face staining revealed that senescence-associated &bgr;-galactosidase activity and p53 expression were elevated in ECs at sites of disturbed flow in response to a high-fat diet. By contrast, ECs exposed to undisturbed flow did not express senescence-associated &bgr;-galactosidase or p53. Studies of aortae from healthy pigs (aged 6 months) also revealed enhanced senescence-associated &bgr;-galactosidase staining at sites of disturbed flow. These data suggest that senescent ECs accumulate at disturbed flow sites during atherogenesis. We used in vitro flow systems to examine whether a causal relationship exists between flow and EC senescence. Exposure of cultured ECs to flow (using either an orbital shaker or a syringe-pump flow bioreactor) revealed that disturbed flow promoted EC senescence compared with static conditions, whereas undisturbed flow reduced senescence. Gene silencing studies demonstrated that disturbed flow induced EC senescence via a p53-p21 signaling pathway. Disturbed flow–induced senescent ECs exhibited reduced migration compared with nonsenescent ECs in a scratch wound closure assay, and thus may be defective for arterial repair. However, pharmacological activation of sirtuin 1 (using resveratrol or SRT1720) protected ECs from disturbed flow–induced senescence. Conclusions—Disturbed flow promotes endothelial senescence via a p53-p21–dependent pathway which can be inhibited by activation of sirtuin 1. These observations support the principle that pharmacological activation of sirtuin 1 may promote cardiovascular health by suppressing EC senescence at atheroprone sites.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules

Christina M. Warboys; R. Eric Berson; Giovanni E. Mann; Jeremy D. Pearson; Peter D. Weinberg

Endothelial properties are affected by mechanical stresses. Several studies have shown that an acute application of shear stress increases the permeability of endothelial monolayers in culture. We investigated whether more prolonged application of shear has the opposite effect. Porcine aortic endothelial cells were cultured on Transwell filters to assess monolayer permeability to albumin. The medium above the cells was swirled using an orbital shaker; resultant shears were computed to lie within the physiological range. Acute application of shear increased permeability, but chronic application reduced it. The effect of chronic but not acute shear was reversed by inhibiting nitric oxide (NO) synthesis. The effect of chronic shear was also reversed by inhibiting phosphatidylinositol 3-OH kinase (PI3K) and soluble guanylyl cyclase. None of these interventions affected permeability under static conditions, and inhibition of cyclooxygenase was without effect. Chronic shear decreased mitosis rates by a fraction comparable to the reduction in permeability, but this effect was not reversed by inhibiting NO synthesis. We conclude that chronic application of shear stress reduces endothelial permeability to macromolecules by a PI3K-NO-cGMP-dependent mechanism. Since atherosclerosis can be triggered by excessive entry of plasma macromolecules into the arterial wall, the phenomenon may help explain the atheroprotective effects of shear and NO.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Role of Shear Stress in Endothelial Cell Morphology and Expression of Cyclooxygenase Isoforms

Claire M.F. Potter; Martina H. Lundberg; Louise Harrington; Christina M. Warboys; Timothy D. Warner; R. Eric Berson; Alexey Moshkov; Julia Gorelik; Peter D. Weinberg; Jane A. Mitchell

Objective—The goal of this study was to examine the effect of chronic heterogeneous shear stress, applied using an orbital shaker, on endothelial cell morphology and the expression of cyclooxygenases 1 and 2. Methods and Results—Porcine aortic endothelial cells were plated on fibronectin-coated Transwell plates. Cells were cultured for up to 7 days either under static conditions or on an orbital shaker that generated a wave of medium inducing shear stress over the cells. Cells were fixed and stained for the endothelial surface marker CD31 or cyclooxygenases 1 and 2. En face confocal microscopy and scanning ion conductance microscopy were used to show that endothelial cells were randomly oriented at the center of the well, aligned with shear stress nearer the periphery, and expressed cyclooxygenase-1 under all conditions. Lipopolysaccharide induced cyclooxygenase-2 and the production of 6-keto-prostaglandin F1&agr; in all cells. Conclusion—Cyclooxygenase-1 is expressed in endothelial cells cultured under chronic shear stress of high or low directionality.


F1000 Medicine Reports | 2011

The role of blood flow in determining the sites of atherosclerotic plaques

Christina M. Warboys; Narges Amini; Amalia de Luca; Paul C. Evans

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells along the inner walls of arteries, and is an underlying cause of cardiovascular disease. Atherosclerotic lesions develop predominantly at branches, bends, and bifurcations in the arterial tree because these sites are exposed to low or disturbed blood flow, which exerts low/oscillatory shear stress on the vessel wall. This mechanical environment alters endothelial cell physiology by enhancing inflammatory activation. In contrast, regions of the arterial tree that are exposed to uniform, unidirectional blood flow and experience high shear stress are protected from inflammation and lesion development. Shear stress is sensed by the endothelium via mechanoreceptors and is subsequently transduced into biochemical signals resulting in modulation of proinflammatory signaling pathways. In this article, we address the molecular mechanisms behind the spatial localization of vascular inflammation and atherosclerosis, with particular focus on studies by our own group of two key proinflammatory signaling pathways, the mitogen-activated protein kinase pathway and the nuclear factor-kappa-B pathway.


Investigative Ophthalmology & Visual Science | 2009

Role of NADPH Oxidase in Retinal Microvascular Permeability Increase by RAGE Activation

Christina M. Warboys; Hong-Boon Toh; Paul A. Fraser

PURPOSE The accumulation of advanced glycation end products (AGEs) within the retina in diabetes is associated with a chronic increase in retinal microvascular permeability. Isolated perfused retinas were used to examine the acute effects of AGEs on retinal microvascular permeability. METHODS Retinas were dissected from eyes obtained from male Wistar rats, pinned out flat, and perfused with the low-molecular-weight fluorescent dye sulforhodamine B. Microvascular permeability was determined from the rate of decrease in fluorescence gradient across a vessel under conditions of zero flow. The production of reactive oxygen species (ROS) in JG2.1 retinal endothelial cells was also assessed with a fluorescent probe working solution. RESULTS A 30-second application of AGE-modified bovine serum albumin (AGE-BSA) to the abluminal surface of the retinal vasculature produced a rapid dose-dependent increase in retinal capillary permeability that was inhibited by pretreatment with anti-RAGE IgG. The permeability response also required ROS generated by NADPH oxidase because pretreatment with apocynin and the free radical scavengers superoxide dismutase and catalase significantly reduced the response. Pretreatment with calphostin C, SKF-96365, and U-73122 also significantly reduced the permeability response. In addition, the permeability response to bradykinin increased permeability through ROS and was potentiated after pretreatment with AGE-BSA. This potentiation was blocked by apocynin. CONCLUSIONS Acute activation of NADPH oxidase by phospholipase C-mediated activation of Ca(2+)-dependent PKC occurs downstream of RAGE activation to acutely increase retinal capillary permeability in the isolated perfused rat retina.


British Journal of Pharmacology | 2015

Aspirin‐induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin‐1 thus inhibiting monocyte vascular infiltration

Gabriella Passacquale; Alkystis Phinikaridou; Christina M. Warboys; Margaret S. Cooper; Begoña Lavin; Alessio Alfieri; Marcelo E. Andia; René M. Botnar; Albert Ferro

There are conflicting data regarding whether netrin‐1 retards or accelerates atherosclerosis progression, as it can lead either to monocyte repulsion from or retention within plaques depending on its cellular source. We investigated the effect of aspirin, which is widely used in cardiovascular prophylaxis, on the synthesis of different isoforms of netrin‐1 by endothelial cells under pro‐inflammatory conditions, and defined the net effect of aspirin‐dependent systemic modulation of netrin‐1 on atherosclerosis progression.


Atherosclerosis | 2014

Requirement of JNK1 for endothelial cell injury in atherogenesis.

Narges Amini; Joseph J. Boyle; Britta Moers; Christina M. Warboys; Talat H. Malik; Mustafa Zakkar; Sheila E. Francis; Justin C. Mason; Dorian O. Haskard; Paul C. Evans

Objective The c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice. Methods and results To assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered. Conclusion We conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation.


Microvascular Research | 2010

Hyperglycemia attenuates acute permeability response to advanced glycation end products in retinal microvasculature.

Christina M. Warboys; Paul A. Fraser

Increased microvascular permeability contributes to the development of diabetic retinopathy and is associated with hyperglycemia and accumulation of advanced glycation end products (AGEs). The isolated perfused retina preparation was used to investigate the effects of hyperglycemia (HG) on the permeability response to AGEs. Retinae were dissected from rats, and the vasculature perfused with sulforhodamine B fluorescent dye and permeability of venular capillaries was determined from the rate of decrease of fluorescence gradient across a vessel during stasis. The resting permeability was very high in streptozotocin treated and some obese Zucker fatty diabetic rats, but low in others. The permeability response to glycated albumin (which is free radical-dependent) in these animals was reduced for a range of concentrations compared to the lean controls. The effects of 15 min 25 mM glucose (HG) superfusion on the retinal microvascular permeability response to 5 microM AGE-BSA was studied in non-diabetic Wistar rats. HG itself had no effect on permeability, but reduced the response to AGE-BSA from 1.02+/-0.08x10(-6) cm s(-1) to 0.31+/-0.07x10(-6) cm s(-1). The response to bradykinin (also free radical-dependent) was not affected by HG. This suggests that chronic exposure to HG down-regulates the signalling pathways activated in response to RAGE stimulation.


Cardiovascular Research | 2014

Bidirectional cross-regulation between the endothelial nitric oxide synthase and β-catenin signalling pathways

Christina M. Warboys; Nan Chen; Qiuping Zhang; Yasin Shaifta; Genevieve Vanderslott; Gabriella Passacquale; Yanhua Hu; Qingbo Xu; Jeremy P. T. Ward; Albert Ferro

Aims β-catenin has been shown to be regulated by inducible nitric oxide synthase (NOS) in endothelial cells. We investigated here whether β-catenin interacts with and regulates endothelial NOS (eNOS) and whether eNOS activation promotes β-catenin signalling. Methods and results We identified β-catenin as a novel eNOS binding protein in human umbilical vein endothelial cells (HUVECs) by mass spectroscopy and western blot analyses of β-catenin and eNOS immunoprecipitates. This was confirmed by in situ proximity ligation assay. eNOS activity, assessed by cGMP production and eNOS phosphorylation (Ser1177), was enhanced in β-catenin−/− mouse pulmonary endothelial cells (MPECs) relative to wild-type MPECs. eNOS activation (using adenosine, salbutamol, thrombin, or histamine), or application of an NO donor (spermine NONOate) or cGMP-analogue (8-bromo-cGMP) caused nuclear translocation of β-catenin in HUVEC as shown by western blotting of nuclear extracts. Exposure to spermine NONOate, 8-bromo-cGMP, or sildenafil (a phosphodiesterase type 5 inhibitor) also increased the expression of β-catenin-dependent transcripts, IL-8, and cyclin D1. Stimulation of wild-type MPECs with basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), spermine NONOate, 8-bromo-cGMP, or sildenafil increased tube length relative to controls in an angiogenesis assay. These responses were abrogated in β-catenin−/− MPECs, with the exception of that to bFGF which is NO-independent. In C57BL/6 mice, subcutaneous VEGF-supplemented Matrigel plugs containing β-catenin−/− MPECs exhibited reduced angiogenesis compared with plugs containing wild-type MPECs. Angiogenesis was not altered in bFGF-supplemented Matrigel. Conclusion These data reveal bidirectional cross-talk and regulation between the NO-cGMP and β-catenin signalling pathways.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Zebrafish model for functional screening of flow-responsive genes

A De Luca; Christina M. Warboys; Pedro Ferreira; La Luong; S. Hsiao; Ismael Gauci; Marwa Mahmoud; Shuang Feng; Céline Souilhol; Neil Bowden; Jp Ashton; Henning Walczak; David N. Firmin; Rob Krams; Justin C. Mason; Dorian O. Haskard; Spencer J. Sherwin; Ridger; Timothy J. A. Chico; Paul C. Evans

Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.

Collaboration


Dive into the Christina M. Warboys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narges Amini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Justin C. Mason

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A De Luca

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge