Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella Passacquale is active.

Publication


Featured researches published by Gabriella Passacquale.


PLOS ONE | 2011

Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes

Gabriella Passacquale; Padman Vamadevan; Luis Pereira; Colleen Hamid; Valerie Corrigall; Albert Ferro

Background Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA) induces a pro-inflammatory phenotype in circulating monocytes. Methodology/Principal Findings CD62P+ platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before and two days after receiving influenza immunization. Three monocytic subsets were identified: CD14+CD16−, CD14highCD16+and CD14lowCD16+. The increase in high sensitivity C-reactive protein post-immunization was accompanied by increased platelet activation and MPA formation (25.02±12.57 vs 41.48±16.81; p = 0.01), along with enhancement of circulating CD14highCD16+ cells (4.7±3.6 vs 10.4±4.8; p = 0.003), their percentage being linearly related to levels of CD62P+-platelets (r2 = 0.4347; p = 0.0008). In separate in vitro experiments, co-incubation of CD14+CD16− cells, isolated from healthy donor subjects, with autologous platelets gave rise to up-regulation of CD16 on monocytes as compared with those maintained in medium alone (% change in CD14+CD16+ cells following 48 h co-incubation of monocytes with platelets was +106±51% vs monocytes in medium alone; p<0.001). This effect correlated directly with degree of MPA formation (r2 = 0.7731; p<0.0001) and was associated with increased monocyte adhesion to endothelial cells. P-selectin glycoprotein ligand-1 (PSGL-1) blocking antibody, which abrogates MPA formation, abolished these effects, as did the cyclooxygenase (COX)-2 selective inhibitor NS-398, aspirin and the EP1/EP2-selective antagonist AH6809. Conclusions/Significance These data suggest that MPA formation, as occurs in the blood under pro-inflammatory conditions, expands the pool of circulating CD14highCD16+ monocytes in a COX-2 dependent manner, and these monocytes exhibit increased adhesion to endothelium. Our findings delineate a novel mechanism underlying the pro-inflammatory effect of platelet activation.


Clinical Pharmacokinectics | 2012

Comparative pharmacokinetics and pharmacodynamics of platelet adenosine diphosphate receptor antagonists and their clinical implications.

Christopher N. Floyd; Gabriella Passacquale; Albert Ferro

Over the last two decades or more, anti-platelet therapy has become established as a cornerstone in the treatment of patients with ischaemic cardiovascular disease, since such drugs effectively reduce arterial thrombotic events. The original agent used in this context was aspirin (acetylsalicylic acid) but, with the advent of adenosine diphosphate (ADP) receptor antagonists, the use of dual anti-platelet therapy has resulted in further improvement in cardiovascular outcomes when compared with aspirin alone. The first group of platelet ADP receptor antagonists to be developed was the thienopyridine class, which comprise inactive pro-drugs that require in vivo metabolism to their active metabolites before exerting their inhibitory effect on the P2Y12 receptor. Clopidogrel has been the principal ADP receptor antagonist in use over the past decade, but is limited by variability in its in vivo inhibition of platelet aggregation (IPA). The pharmacokinetics of clopidogrel are unpredictable due to their vulnerability to multiple independent factors including genetic polymorphisms. Expression of the 3435T/T genetic variant encoding the MDR1 gene for the P-glycoprotein efflux transporter results in a significantly reduced maximum drug concentration and area under the plasma concentration-time curve as intestinal absorption of clopidogrel is reduced; and the expression of the mutant *2 allele of CYP2C19 results in similar pharmacokinetic effects as the two cytochrome P450 (CYP)-mediated steps required for the production of the active metabolite of clopidogrel are impaired. These variable pharmacokinetics lead to erratic pharmacodynamics and cannot reliably be overcome with increased dosing. Both prasugrel, a third-generation thienopyridine, and ticagrelor, a cyto-pentyl-triazolo-pyrimidine, have more predictable pharmacokinetics and enhanced pharmacodynamics than clopidogrel. Neither appears to be affected by the same genetic polymorphisms as clopidogrel; prasugrel requires only a single CYP-mediated step to produce its active metabolite and ticagrelor is not a pro-drug. Enhanced IPA by both prasugrel and ticagrelor is achieved at the expense of increased major bleeding, although this is partially mitigated in the case of ticagrelor due to its reversible IPA. However, the reversible binding of ticagrelor to the P2Y12 receptor requires a twice-daily dosing regimen. Due to limited data from clinical studies, the use of prasugrel is currently restricted to individuals undergoing percutaneous coronary intervention who are ≤75 years old and have a body weight ≥60 kg. The clinical data for ticagrelor are more comprehensive and this drug therefore has a place in the management of patients with acute coronary syndrome at moderate-to-high risk of ischaemic events, irrespective of treatment strategy. Here we review in detail the pharmacokinetics and pharmacodynamics of clopidogrel, prasugrel and ticagrelor, and explore the implications of the differences in these parameters for their clinical use.


American Journal of Hypertension | 2010

Platelet Activation in Essential Hypertension: Implications for Antiplatelet Treatment

Eugenia Gkaliagkousi; Gabriella Passacquale; Stella Douma; Chrysanthos Zamboulis; Albert Ferro

Essential hypertension is associated with increased risk of arterial thrombotic disease. Among other factors, enhanced platelet activity contributes significantly to this phenomenon. An increased level of circulating monocyte-platelet aggregates (MPAs) represents one of the most robust markers of platelet activation; furthermore, these aggregates are also believed to contribute to the pathophysiology of atherothrombotic disease. Putative mechanisms that contribute to platelet activation in essential hypertension include endothelial dysfunction, neurohumoral (sympathetic and renin-angiotensin systems) overactivity, decreased platelet nitric oxide (NO) biosynthesis, and platelet degranulation secondary to increased shear. Current recommendations are that hypertensive patients receive aspirin therapy only if their calculated cardiovascular risk is high and their blood pressure (BP) is adequately controlled. By contrast, the use of antiplatelet treatment in low-risk hypertensive patients is not established and merits further investigation. Moreover, the place of alternative antiplatelet agents other than aspirin, such as clopidogrel, is unclear at present. Some experimental evidence suggests that clopidogrel may confer an additive protective effect over and above aspirin in hypertensive patients, by virtue of effects on the evolution of the atherosclerotic process. This now needs to be investigated in long-term clinical outcome studies.


Journal of the American Heart Association | 2013

Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent.

Alkystis Phinikaridou; Marcelo E. Andia; Gabriella Passacquale; Albert Ferro; René M. Botnar

Background Endothelial dysfunction promotes atherosclerosis. We investigated whether in vivo magnetic resonance imaging (MRI) using an albumin‐binding contrast agent, gadofosveset, could monitor the efficacy of minocycline and ebselen in reducing endothelial permeability and atherosclerotic burden in the brachiocephalic artery of high‐fat diet (HFD)–fed ApoE−/− mice. Methods and Results ApoE−/− mice were scanned 12 weeks after commencement of either a normal diet (controls) or an HFD. HFD‐fed ApoE−/− mice were either untreated or treated with minocycline or ebselen for 12 weeks. Delayed‐enhancement MRI and T1 mapping of the brachiocephalic artery, 30 minutes after injection of gadofosveset, showed increased vessel wall enhancement and relaxation rate (R1, s−1) in untreated HFD‐fed ApoE−/− mice (R1=3.8±0.52 s−1) compared with controls (R1=2.15±0.34 s−1, P<0.001). Conversely, minocycline‐treated (R1=2.7±0.17 s−1, P<0.001) and ebselen‐treated (R1=2.7±0.23 s−1, P<0.001) ApoE−/− mice showed less vessel wall enhancement compared with untreated HFD‐fed ApoE−/− mice. Mass spectroscopy showed a lower gadolinium concentration in the brachiocephalic artery of treated (minocycline=28.5±3 μmol/L, ebselen=32.4±4 μmol/L) compared with untreated HFD‐fed ApoE−/− mice (191±4.8 μmol/L) (P<0.02). Both interventions resulted in a lower plaque burden as measured by delayed‐enhancement MRI (minocycline=0.14±0.02 mm2, ebselen=0.20±0.09 mm2, untreated=0.44±0.01 mm2; P<0.001) and histology (minocycline=0.13±0.05 mm2, ebselen=0.18±0.02 mm2, untreated=0.32±0.04 mm2; P<0.002). Endothelium cells displayed fewer structural changes and smaller gap junction width in treated compared with untreated animals as seen by electron microscopy (minocycline=42.3±8.4 nm, ebselen=56.5±17 nm, untreated=2400±39 nm; P<0.001). Tissue flow cytometry of the brachiocephalic artery showed lower monocyte/macrophage content in both ebselen‐ and minocycline‐treated mice (8.06±3.2% and 7.62±1.73%, respectively) compared with untreated animals (20.1±2.2%) (P=0.03), with significant attenuation of the proinflammatory Ly6Chigh subtype (untreated mice, 42.64±6.1% of total monocytes; ebselen, 14.07±9.5% of total monocytes; minocycline, 26.42±0.6% of total monocytes). Conclusions We demonstrate that contrast‐enhanced MRI with an albumin‐binding contrast agent can be used to noninvasively monitor the effect of interventions on endothelial permeability and plaque burden. Blood albumin leakage could be a surrogate marker for the in vivo evaluation of interventions that aim at restoring endothelial integrity.


Cardiovascular Research | 2015

Netrin-1 as a novel therapeutic target in cardiovascular disease: to activate or inhibit?

Kerry Layne; Albert Ferro; Gabriella Passacquale

Netrins are a family of laminin-like proteins, which were initially identified for their role in embryonic axonal guidance. Over recent years, it has become apparent that netrin-1 may additionally be involved in the underlying pathology of several multisystem diseases, making it an attractive potential therapeutic target. It is involved in postnatal angiogenesis, particularly in the context of an ischaemic insult, although there are conflicting reports as to whether netrin-1 acts in a pro- or anti-angiogenic capacity. In atherosclerosis, opposing effects have similarly been reported on plaque progression, due to the ability of netrin-1 to inhibit both macrophage egress from and monocyte ingress into lesions. Netrin-1 has also been shown to exert a cardioprotective action in the context of ischaemia-reperfusion injury following myocardial infarction. Moreover, urinary netrin-1 levels rise in response to acute kidney injury and at a faster rate than traditional markers of renal impairment, highlighting a potential clinical role for netrin-1 as a biomarker of renal function. The increased urinary excretion of netrin-1 during kidney disease is paralleled by a down-regulation of its plasma levels, with potential implications at a systemic level. In summary, the role of netrin-1 in cardiovascular disease is an emerging area of research requiring further in-depth study to elucidate its mechanism of action and potential as a therapeutic target, especially in view of its seemingly contradictory actions in certain physiological pathways which serve to highlight its manifold and often opposite effects in numerous physiological and pathophysiological processes.


British Journal of Pharmacology | 2015

Aspirin‐induced histone acetylation in endothelial cells enhances synthesis of the secreted isoform of netrin‐1 thus inhibiting monocyte vascular infiltration

Gabriella Passacquale; Alkystis Phinikaridou; Christina M. Warboys; Margaret S. Cooper; Begoña Lavin; Alessio Alfieri; Marcelo E. Andia; René M. Botnar; Albert Ferro

There are conflicting data regarding whether netrin‐1 retards or accelerates atherosclerosis progression, as it can lead either to monocyte repulsion from or retention within plaques depending on its cellular source. We investigated the effect of aspirin, which is widely used in cardiovascular prophylaxis, on the synthesis of different isoforms of netrin‐1 by endothelial cells under pro‐inflammatory conditions, and defined the net effect of aspirin‐dependent systemic modulation of netrin‐1 on atherosclerosis progression.


Cardiovascular Research | 2011

Platelet nitric oxide signalling in heart failure: role of oxidative stress

Ashish Shah; Gabriella Passacquale; Eugenia Gkaliagkousi; James M. Ritter; Albert Ferro

AIMS Heart failure is associated with deficient endothelial nitric oxide (NO) production as well as increased oxidative stress and accelerated NO degradation. The aim of this study was to evaluate platelet NO biosynthesis and superoxide anion (O(2)(-)) production in patients with heart failure. METHODS AND RESULTS In platelets from patients with heart failure due to idiopathic dilated cardiomyopathy (n= 16) and healthy control subjects (n= 23), NO synthase (NOS) activity was evaluated by L-[(3)H]-arginine to l-[(3)H]-citrulline conversion, cGMP was determined by radioimmunoassay, vasodilator-stimulated phosphoprotein (VASP: total and serine-239-phosphorylated) was assessed by western blotting, and O(2)(-) production and O(2)(-) scavenging capacity were measured by pholasin-enhanced chemiluminescence. In platelets from patients with heart failure, basal NOS activity was higher than in those from controls; furthermore, whereas platelet NOS activity increased as expected in response to albuterol or collagen in controls, no increase occurred in platelets from heart failure subjects. Despite this, basal intraplatelet NO-attributable cGMP was lower in heart failure than in control subjects, as was serine-239 phosphorylation of VASP, suggesting a decrease in bioactive NO. Platelets from heart failure subjects exhibited higher basal and collagen-stimulated O(2)(-) production and impaired O(2)(-) scavenging capacity, resulting in higher oxidative stress, consistent with the observed decrease in bioactive NO. CONCLUSION In heart failure, despite activation of NOS, platelets produce less bioactive NO, probably as a result of NO scavenging due to increased O(2)(-) production. This functional defect in the platelet l-arginine/NO/guanylyl cyclase pathway could contribute to the platelet activation observed in heart failure.


Pharmacological Research | 2017

Gender differences in cardiovascular prophylaxis: Focus on antiplatelet treatment

Paolo Di Giosia; Gabriella Passacquale; Marco Petrarca; Paolo Giorgini; Alberto M. Marra; Albert Ferro

Graphical abstract Figure. No Caption available. ABSTRACT Cardiovascular disease (CVD) represents the leading cause of death worldwide, and equally affects both sexes although women develop disease at an older age than men. A number of clinical evidence has identified the female sex as an independent factor for poor prognosis, with the rate of mortality and disability following an acute cardiovascular (CV) event being higher in women than men. It has been argued that the different level of platelet reactivity between sexes may account for a different responsiveness to anti‐platelet therapy, with consequent important implications on clinical outcomes. However, conclusive evidence supporting the concept of a gender‐dependent effectiveness of platelet inhibitors are lacking. On the contrary, sex‐related dissimilarities have been evidenced in cardiovascular patients in terms of age of presentation, comorbidities such as obesity, diabetes and renal disease, and a different pharmacological approach to and effectiveness in controlling classical cardiovascular risk factors such as hypertension, glucose profile and lipid dysmetabolism. All these factors could place women at an increased level of cardiovascular risk compared to men, and may concur to an enhanced pro‐thrombogenic profile. The purpose of this manuscript is to provide an overview of gender‐related differences in cardiovascular treatment, in order to highlight the need to improve the pharmacological prophylaxis adopted in women through a more accurate evaluation of the overall cardiovascular risk profile with consequent establishment of a more effective and targeted anti‐thrombotic strategy which is not limited to the use of anti‐platelet agents.


Cardiovascular Research | 2016

Anti-platelet drugs attenuate the expansion of circulating CD14highCD16+ monocytes under pro-inflammatory conditions.

Kerry Layne; Paolo Di Giosia; Albert Ferro; Gabriella Passacquale

Aims Levels of circulating CD14highCD16+ monocytes increase in atherosclerotic patients and are predictive of future cardiovascular events. Platelet activation has been identified as a crucial determinant in the acquisition of a CD16+ phenotype by classical CD14highCD16− cells. We tested the hypothesis that anti-platelet drugs modulate the phenotype of circulating monocytes. Methods and results Sixty healthy subjects undergoing influenza immunization were randomly assigned to either no treatment or anti-platelet therapy, namely aspirin 300 mg or 75 mg daily, or clopidogrel (300 mg loading dose followed by 75 mg), for 48 h post-immunization (n = 15/group). Monocyte subsets, high-sensitivity C-reactive protein, pro-inflammatory cytokines, and P-selectin were measured at baseline and post-immunization. The CD14highCD16+ monocyte cell count rose by 67.3% [interquartile range (IQR): 35.7/169.2; P = 0.0002 vs. baseline] in untreated participants. All anti-platelet regimes counteracted expansion of this monocytic subpopulation. Although no statistical differences were noted among the three treatments, aspirin 300 mg was the most efficacious compared with the untreated group (−12.5% change from baseline; IQR: −28.7/18.31; P = 0.001 vs. untreated). Similarly, the rise in P-selectin (17%; IQR: −5.0/39.7; P = 0.03 vs. baseline) observed in untreated participants was abolished by all treatments, with aspirin 300 mg exerting the strongest effect (−30.7%; IQR: −58.4/−0.03; P = 0.007 vs. untreated). Changes in P-selectin levels directly correlated with changes in CD14highCD16+ cell count (r = 0.5; P = 0.0002). There was a similar increase among groups in high-sensitivity C-reactive protein (P < 0.03 vs. baseline levels). Conclusions Anti-platelet drugs exert an immunomodulatory action by counteracting CD14highCD16+ monocyte increase under pro-inflammatory conditions, with this effect being dependent on the amplitude of P-selectin reduction.


British Journal of Clinical Pharmacology | 2011

Current concepts of platelet activation: possibilities for therapeutic modulation of heterotypic vs. homotypic aggregation

Gabriella Passacquale; Albert Ferro

Thrombogenic and inflammatory activity are two distinct aspects of platelet biology, which are sustained by the ability of activated platelets to interact with each other (homotypic aggregation) and to adhere to circulating leucocytes (heterotypic aggregation). These two events are regulated by distinct biomolecular mechanisms that are selectively activated in different pathophysiological settings. They can occur simultaneously, for example, as part of a pro-thrombotic/pro-inflammatory response induced by vascular damage, or independently, as in certain clinical conditions in which abnormal heterotypic aggregation has been observed in the absence of intravascular thrombosis. Current antiplatelet drugs have been developed to target specific molecular signalling pathways mainly implicated in thrombus formation, and their ever increasing clinical use has resulted in clear benefits in the treatment and prevention of arterial thrombotic events. However, the efficacy of currently available antiplatelet drugs remains suboptimal, most likely because their therapeutic action is limited to only few of the signalling pathways involved in platelet homotypic aggregation. In this context, modulation of heterotypic aggregation, which is believed to contribute importantly to acute thrombotic events, as well to the pathophysiology of atherosclerosis itself, may offer benefits over and above the classical antiplatelet approach. This review will focus on the distinct biomolecular pathways that, following platelet activation, underlie homotypic and heterotypic aggregation, aiming potentially to identify novel therapeutic targets.

Collaboration


Dive into the Gabriella Passacquale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Chen

King's College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge