Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina R. Riesselman is active.

Publication


Featured researches published by Christina R. Riesselman.


Nature | 2009

Obliquity-paced Pliocene West Antarctic ice sheet oscillations

Tim R. Naish; Ross D. Powell; R. H. Levy; Gary S. Wilson; Reed P. Scherer; Franco Maria Talarico; Lawrence A. Krissek; Frank Niessen; M. Pompilio; T. J. Wilson; Lionel Carter; Robert M. DeConto; Peter John Huybers; Robert McKay; David Pollard; J. Ross; D. M. Winter; P. J. Barrett; G. H. Browne; Rosemary Cody; Ellen A. Cowan; James S. Crampton; Gavin B. Dunbar; Nelia W. Dunbar; Fabio Florindo; Catalina Gebhardt; Ian J. Graham; M. Hannah; Dhiresh Hansaraj; David M. Harwood

Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth’s orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the ‘warmer-than-present’ early-Pliocene epoch (∼5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ∼40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ∼3 °C warmer than today and atmospheric CO2 concentration was as high as ∼400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Antarctic and Southern Ocean influences on Late Pliocene global cooling.

Robert McKay; Tim R. Naish; Lionel Carter; Christina R. Riesselman; Robert B. Dunbar; Charlotte M. Sjunneskog; D. M. Winter; Francesca Sangiorgi; Courtney Warren; Mark Pagani; Stefan Schouten; Veronica Willmott; R. H. Levy; Robert M. DeConto; Ross D. Powell

The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ∼3.3 Ma, followed by a coastal sea surface temperature cooling of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.


Scientific Reports | 2013

Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

Harry J. Dowsett; Kevin M. Foley; Danielle K. Stoll; Mark A. Chandler; Linda E. Sohl; Mats Bentsen; Bette L. Otto-Bliesner; Fran J. Bragg; Wing-Le Chan; Camille Contoux; Aisling M. Dolan; Alan M. Haywood; Jeff Jonas; Anne Jost; Youichi Kamae; Gerrit Lohmann; Daniel J. Lunt; Kerim H. Nisancioglu; Ayako Abe-Ouchi; Gilles Ramstein; Christina R. Riesselman; Marci M. Robinson; Nan A. Rosenbloom; Ulrich Salzmann; Christian Stepanek; Stephanie L. Strother; Hiroaki Ueda; Qing Yan; Zhongshi Zhang

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.


Paleoceanography | 2012

Chronostratigraphic framework for the IODP Expedition 318 cores from the Wilkes Land Margin: constraints for paleoceanographic reconstruction

Lisa Tauxe; Catherine E. Stickley; S. Sugisaki; Peter K. Bijl; Steve Bohaty; Henk Brinkhuis; Carlota Escutia; José-Abel Flores; Alexander J. P. Houben; Masao Iwai; Francisco J Jiménez-Espejo; Robert McKay; Sandra Passchier; Jörg Pross; Christina R. Riesselman; Ursula Röhl; Francesca Sangiorgi; Kevin Welsh; Adam Klaus; Annick Fehr; James Bendle; Robert B. Dunbar; Jhon Jairo Gonzàlez; Travis G Hayden; Kota Katsuki; Matthew P Olney; Stephen F. Pekar; Prakash K. Shrivastava; T. van de Flierdt; Trevor Williams

The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.


Philosophical Transactions of the Royal Society A | 2013

The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift.

Harry J. Dowsett; Marci M. Robinson; Danielle K. Stoll; Kevin M. Foley; Andrew L.A. Johnson; Mark Williams; Christina R. Riesselman

Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Surveys Pliocene Research, Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format—a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.


Paleoceanography | 2010

Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: Implications for deep-ocean Mg/Ca paleothermometry

Victoria L. Peck; Jimin Yu; Sev Kender; Christina R. Riesselman

To date, no conclusive evidence has been identified for intermediate or deep water cooling associated with the > 1 parts per thousand benthic delta O-18 increase at the Eocene-Oligocene transition (EOT) when large permanent ice sheets first appeared on Antarctica. Interpretation of this isotopic shift as purely ice volume change necessitates bipolar glaciation in the early Oligocene approaching that of the Last Glacial Maximum. To test this hypothesis, it is necessary to have knowledge about deep water temperature, which previous studies have attempted to reconstruct using benthic foraminiferal Mg/Ca ratios. However, it appears likely that contemporaneous changes in ocean carbonate chemistry compromised the Mg/Ca temperature sensitivity of benthic foraminifera at deep sites. New geochemical proxy records from a relatively shallow core, ODP Site 1263 (estimated paleodepth of 2100 m on the Walvis Ridge), reveal that carbonate chemistry change across the EOT was not limited to deep sites but extended well above the lysocline, critically limiting our ability to obtain reliable estimates of deep-ocean cooling during that time. Benthic Li/Ca measurements, used as a proxy for [CO32-], suggest that [CO32-] increased by similar to 29 mu mol/kg at Site 1263 across the EOT and likely impacted benthic foraminiferal Mg/Ca. A [CO32-]-benthic Mg/Ca relationship is most apparent during the early EOT when the overall increase in [CO32-] is interrupted by an apparent dissolution event. Planktonic d18O and Mg/Ca records suggest no change in thermocline temperature and a delta O-18(seawater) increase of up to 0.6 parts per thousand at this site across the EOT, consistent with previous estimates and supporting the absence of extensive bipolar glaciation in the early Oligocene.


Geophysical Research Letters | 2008

CO2 sensitivity of Southern Ocean phytoplankton

Philippe D. Tortell; Christopher D. Payne; Y. Li; Scarlett Trimborn; Björn Rost; Walker O. Smith; Christina R. Riesselman; Robert B. Dunbar; Peter N. Sedwick; Giacomo R. DiTullio


Nature Geoscience | 2013

Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth

Carys P Cook; Tina van de Flierdt; Trevor Williams; Sidney R. Hemming; Masao Iwai; Munemasa Kobayashi; Francisco J Jiménez-Espejo; Carlota Escutia; Jhon Jairo Gonzàlez; Boo-Keun Khim; Robert McKay; S. Passchier; Steven M. Bohaty; Christina R. Riesselman; Lisa Tauxe; Saiko Sugisaki; Alberto Lopez Galindo; Molly O Patterson; Francesca Sangiorgi; E. L. Pierce; Henk Brinkhuis; Adam Klaus; Annick Fehr; James Bendle; Peter K. Bijl; Stephanie A. Carr; Robert B. Dunbar; José-Abel Flores; Travis G Hayden; Kota Katsuki


Nature Climate Change | 2012

Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

Harry J. Dowsett; Marci M. Robinson; Alan M. Haywood; Daniel J. Hill; Aisling M. Dolan; Danielle K. Stoll; Wing-Le Chan; Ayako Abe-Ouchi; Mark A. Chandler; Nan A. Rosenbloom; Bette L. Otto-Bliesner; Fran J. Bragg; Daniel J. Lunt; Kevin M. Foley; Christina R. Riesselman


Limnology and Oceanography | 2007

Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea

Erin M. Bertrand; Mak A. Saito; Julie M. Rose; Christina R. Riesselman; Maeve C. Lohan; Abigail E. Noble; Peter A. Lee; Giacomo R. DiTullio

Collaboration


Dive into the Christina R. Riesselman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert McKay

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

D. M. Winter

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

David M. Harwood

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Frank Niessen

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Gavin B. Dunbar

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Foley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Marci M. Robinson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Matthew P Olney

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Reed P. Scherer

Northern Illinois University

View shared research outputs
Researchain Logo
Decentralizing Knowledge