Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marci M. Robinson is active.

Publication


Featured researches published by Marci M. Robinson.


Scientific Reports | 2013

Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

Harry J. Dowsett; Kevin M. Foley; Danielle K. Stoll; Mark A. Chandler; Linda E. Sohl; Mats Bentsen; Bette L. Otto-Bliesner; Fran J. Bragg; Wing-Le Chan; Camille Contoux; Aisling M. Dolan; Alan M. Haywood; Jeff Jonas; Anne Jost; Youichi Kamae; Gerrit Lohmann; Daniel J. Lunt; Kerim H. Nisancioglu; Ayako Abe-Ouchi; Gilles Ramstein; Christina R. Riesselman; Marci M. Robinson; Nan A. Rosenbloom; Ulrich Salzmann; Christian Stepanek; Stephanie L. Strother; Hiroaki Ueda; Qing Yan; Zhongshi Zhang

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.


Philosophical Transactions of the Royal Society A | 2009

Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective.

Harry J. Dowsett; Marci M. Robinson

The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east–west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.


Philosophical Transactions of the Royal Society A | 2009

Surface temperatures of the Mid-Pliocene North Atlantic Ocean: implications for future climate

Harry J. Dowsett; Mark A. Chandler; Marci M. Robinson

The Mid-Pliocene is the most recent interval in the Earths history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


Eos, Transactions American Geophysical Union | 2008

Pliocene Role in Assessing Future Climate Impacts

Marci M. Robinson; Harry J. Dowsett; Mark A. Chandler

Future warming projected by the Intergovernmental Panel on Climate Change (IPCC) has the potential to affect every person on Earth. Extreme weather events, rising sea level, and migrating ecosystems and resources may result in socioeconomic stresses. Although we can plan and prepare for what is expected, the most dangerous aspect of our changing climate is the uncertainty in climate sensitivity. To reduce the uncertainties of climate change, paleoclimatologists are focusing on a possible yet imperfect analog to a future warmer climate.


Philosophical Transactions of the Royal Society A | 2013

The PRISM (Pliocene palaeoclimate) reconstruction: time for a paradigm shift.

Harry J. Dowsett; Marci M. Robinson; Danielle K. Stoll; Kevin M. Foley; Andrew L.A. Johnson; Mark Williams; Christina R. Riesselman

Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Surveys Pliocene Research, Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format—a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.


Paleoceanography | 2017

Shallow marine response to global climate change during the Paleocene‐Eocene Thermal Maximum, Salisbury Embayment, USA

Jean M. Self-Trail; Marci M. Robinson; Timothy J. Bralower; Jocelyn A. Sessa; Elizabeth Hajek; Lee R. Kump; Sheila Trampush; Debra A. Willard; Lucy E. Edwards; David S. Powars; Gregory A. Wandless

The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30-100 m water depth) site in the Salisbury Embayment. Observations indicate that, at the onset of the PETM, the site abruptly shifted from an open-marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.


Scientific Data | 2015

A global planktic foraminifer census data set for the Pliocene ocean

Harry J. Dowsett; Marci M. Robinson; Kevin M. Foley

This article presents data derived by the USGS Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project. PRISM has generated planktic foraminifer census data from core sites and outcrops around the globe since 1988. These data form the basis of a number of paleoceanographic reconstructions focused on the mid-Piacenzian Warm Period (3.264 to 3.025 million years ago). Data are presented as counts of individuals within 64 taxonomic categories for each locality. We describe sample acquisition and processing, age dating, taxonomy and archival storage of material. These data provide a unique, stratigraphically focused opportunity to assess the effects of global warming on marine plankton.


Archive | 2017

PRISM late Pliocene (Piacenzian) alkenone - derived SST data

Harry J. Dowsett; Marci M. Robinson; Kevin M. Foley; Timothy Herbert

This dataset collects sea surface temperature data generated through alkenone analysis of late Pliocene sediments collected from cores and field localities by USGS PRISM project members. Alkenone analysis of sample material was performed by Timothy Herbert at Brown University.


Geoscientific Model Development | 2011

Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1)

Alan M. Haywood; Harry J. Dowsett; Marci M. Robinson; Danielle K. Stoll; Aisling M. Dolan; Daniel J. Lunt; Bette L. Otto-Bliesner; Mark A. Chandler


Stratigraphy | 2010

The PRISM3D paleoenvironmental reconstruction

Harry J. Dowsett; Marci M. Robinson; Alan M. Haywood; Ulrich Salzmann; Daniel J. Hill; Linda E. Sohl; Mark A. Chandler; Mark Williams; Kevin M. Foley; Danielle K. Stoll

Collaboration


Dive into the Marci M. Robinson's collaboration.

Top Co-Authors

Avatar

Harry J. Dowsett

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Foley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Chandler

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Danielle K. Stoll

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bette L. Otto-Bliesner

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge