Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina S. Kang is active.

Publication


Featured researches published by Christina S. Kang.


Bioresource Technology | 2014

Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell.

Christina S. Kang; Numfon Eaktasang; Dae-Young Kwon; Han S. Kim

In this study, a mediator-less microbial fuel cell (MFC) inoculated with a sulfate-reducing bacterium (SBR), Desulfovibrio desulfuricans, was equipped with bare and surface-treated graphite felt electrodes. Electrochemical treatment of the anode surface facilitated biofilm formation on the electrode, resulting in rapid and enhanced current production. The maximum current density of the treated anode was 233±24.2mA/m(2), which was 41% higher than that of the untreated anode. The electron transfer rate also increased from 2.45±0.04 to 3.0±0.02μmol of electrons/mg of protein·min. Biofilm formation on the treated anode was mainly due to the strong hydrogen or peptide bonds between the amide groups of bacterial materials (including cytochrome c) and carboxyl groups formed on the electrodes. These results provide useful information on direct electron transfer by SRB in a mediator-less MFC through cytochrome c and the effects of the electrochemical treatment of electrodes on MFC performance.


Bioresource Technology | 2016

Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell.

Numfon Eaktasang; Christina S. Kang; Heejun Lim; Oh Sung Kwean; Suyeon Cho; Yo-Han Kim; Han S. Kim

This study reports that the obligate anaerobic microorganism, Desulfovibrio desulfuricans, a predominant sulfate-reducing bacterium (SRB) in soils and sediments, can produce nanoscale bacterial appendages for extracellular electron transfer. These nanofilaments were electrically-conductive (5.81S·m(-1)) and allowed SRBs to directly colonize the surface of insoluble or solid electron acceptors. Thus, the direct extracellular electron transfer to the insoluble electrode in the microbial fuel cell (MFC) was possible without inorganic electron-shuttling mediators. The production of nanofilaments was stimulated when only insoluble electron acceptors were available for cellular respiration. These results suggest that when availability of a soluble electron acceptor for SRBs (SO4(2-)) is limited, D. desulfuricans initiates the production of conductive nanofilaments as an alternative strategy to transfer electrons to insoluble electron acceptors. The findings of this study contribute to understanding of the role of SRBs in the biotransformation of various substances in soils and sediments and in the MFC.


Bioresource Technology | 2013

Effective biochemical decomposition of chlorinated aromatic hydrocarbons with a biocatalyst immobilized on a natural enzyme support

Seok Hwan Lee; Sun H. Lee; Song J. Ryu; Christina S. Kang; Yanasinee Suma; Han S. Kim

The enzymatic decomposition of 4-chlorophenol metabolites using an immobilized biocatalyst was investigated in this study. Catechol 1,2-dioxygenase for ortho ring cleavage obtained via cloning of the corresponding gene cphA-I from Arthrobacter chlorophenolicus A6 was overexpressed and purified. It was found that the cphA-I enzyme could catalyze the degradation of catechol, 4-chlorocatechol, and 3-methylcatechol. The expressed enzyme was immobilized onto a natural enzyme support, fulvic acid-activated montmorillonite. The immobilization yield was as high as 63%, and the immobilized enzyme maintained high substrate utilization activity, with only a 15-24% reduction in the specific activity. Kinetic analysis demonstrated marginal differences in νmax and KM values for the free and immobilized enzymes, indicating that inactivation of the immobilized enzyme was minimal. The immobilized enzyme exhibited notably increased stability against changes in the surrounding environment (temperature, pH, and ionic strength). Our results provide useful information for the effective enzymatic biochemical treatment of hazardous organic compounds.


Journal of Hazardous Materials | 2015

Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study.

Sung Mi Yun; Christina S. Kang; Jonghwa Kim; Han S. Kim

The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, KUbatch and KLbatch, converged to constant values as Ce increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of KUbatch and KLbatch were very close to those of KUfit and KLfit determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.


Bioresource Technology | 2017

Oxidative biodegradation of 4-chlorophenol by using recombinant monooxygenase cloned and overexpressed from Arthrobacter chlorophenolicus A6

Christina S. Kang; Jun Won Yang; Wooyoun Cho; Seonyeong Kwak; S.H. Park; Yejee Lim; Jae Wan Choe; Han S. Kim

In this study, cphC-I and cphB, encoding a putative two-component flavin-diffusible monooxygenase (TC-FDM) complex, were cloned from Arthrobacter chlorophenolicus A6. The corresponding enzymes were overexpressed to assess the feasibility of their utilization for the oxidative decomposition of 4-chlorophenol (4-CP). Soluble CphC-I was produced at a high level (∼50%), and subsequently purified. Since CphB was expressed in an insoluble form, a flavin reductase, Fre, cloned from Escherichia coli was used as an alternative reductase. CphC-I utilized cofactor FADH2, which was reduced by Fre for the hydroxylation of 4-CP. This recombinant enzyme complex exhibited a higher specific activity for the oxidation of 4-CP (45.34U/mg-protein) than that exhibited by CphC-I contained in cells (0.18U/mg-protein). The Michaelis-Menten kinetic parameters were determined as: vmax=223.3μM·min-1, KM=249.4μM, and kcat/KM=0.052min-1·μM-1. These results could be useful for the development of a new biochemical remediation technique based on enzymatic agents catalyzing the degradation of phenolic contaminants.


Bioresource Technology | 2016

Enzymatic degradation of aromatic hydrocarbon intermediates using a recombinant dioxygenase immobilized onto surfactant-activated carbon nanotube

Yanasinee Suma; Heejun Lim; Oh Sung Kwean; Suyeon Cho; Junwon Yang; Yo-Han Kim; Christina S. Kang; Han S. Kim

This study examined the enzymatic decomposition of aromatic hydrocarbon intermediates (catechol, 4-chlorocatechol, and 3-methylcatechol) using a dioxygenase immobilized onto single-walled carbon nanotube (SWCNT). The surfaces of SWCNTs were activated with surfactants. The dioxygenase was obtained by recombinant technique: the corresponding gene was cloned from Arthrobacter chlorophenolicus A6, and the enzyme was overexpressed and purified subsequently. The enzyme immobilization yield was 62%, and the high level of enzyme activity was preserved (60-79%) after enzyme immobilization. Kinetic analyses showed that the substrate utilization rates and the catalytic efficiencies of the immobilized enzyme for all substrates (target aromatic hydrocarbon intermediates) tested were similar to those of the free enzyme, indicating that the loss of enzyme activity was minimal during enzyme immobilization. The immobilized enzyme was more stable than the free enzyme against abrupt changes in pH, temperature, and ionic strength. Moreover, it retained high enzyme activity even after repetitive use.


Journal of Soil and Groundwater Environment | 2014

Overexpression and Purification of Monooxygenases Cloned from Arthrobacter chlorophenolicus A6 for Enzymatic Decomposition of 4-Chlorophenol

Song-Jung Ryu; Christina S. Kang; Han S. Kim

Arthrobacter chlorophenolicus A6 possesses several monooxygenases (CphC-I, CphC-II, and CphB) that can catalyze the transformation of 4-chlorophenol (4-CP) to hydroxylated intermediates in the initial steps of substrate metabolism. The corresponding genes of the monooxygenases were cloned, and the competent cells were transformed with these recombinant plasmids. Although CphC-II and CphB were expressed as insoluble forms, CphC-I was successfully expressed as a soluble form and isolated by purification. The specific activity of the purified CphC-I was analyzed by using 4-CP, 4-chlorocatechol (4-CC), and catechol (CAT) as substrates. The specific activities for 4-CP, 4-CC, and CAT were determined to be 0.312 U/mg, 0.462 U/mg, 0.246 U/mg, respectively. The results of this study indicated that CphC-I is able to catalyze the degradation of 4-CC and CAT in addition to 4-CP, which is a primary substrate. This research is expected to provide the fundamental information for the development of an eco-friendly biochemical degradation of aromatic hydrocarbons.


Environmental Engineering Research | 2013

Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell

Numfon Eaktasang; Christina S. Kang; Song Jung Ryu; Yanasinee Suma; Han S. Kim


Bioprocess and Biosystems Engineering | 2013

Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

Numfon Eaktasang; Hyeong-Sik Min; Christina S. Kang; Han S. Kim


Environmental Science and Pollution Research | 2016

Noncovalent and covalent immobilization of oxygenase on single-walled carbon nanotube for enzymatic decomposition of aromatic hydrocarbon intermediates

Yanasinee Suma; Christina S. Kang; Han S. Kim

Collaboration


Dive into the Christina S. Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge