Christina Schütz
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christina Schütz.
Nature Communications | 2015
Ivan Usov; Gustav Nyström; Jozef Adamcik; Stephan Handschin; Christina Schütz; Andreas B. Fall; Lennart Bergström; Raffaele Mezzenga
Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement.
PLOS ONE | 2012
Christina Schütz; Jordi Sort; Zoltán Bacsik; Vitaliy Oliynyk; Eva Pellicer; Andreas B. Fall; Lars Wågberg; Lars Berglund; Lennart Bergström; German Salazar-Alvarez
The formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young’s modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces.
ChemPhysChem | 2014
Ji Hyun Park; JungHyun Noh; Christina Schütz; German Salazar-Alvarez; Giusy Scalia; Lennart Bergström; Jan P. F. Lagerwall
The intrinsic ability of cellulose nanocrystals (CNCs) to self-organize into films and bulk materials with helical order in a cholesteric liquid crystal is scientifically intriguing and potentially important for the production of renewable multifunctional materials with attractive optical properties. A major obstacle, however, has been the lack of control of helix direction, which results in a defect-rich, mosaic-like domain structure. Herein, a method for guiding the helix during film formation is introduced, which yields dramatically improved uniformity, as confirmed by using polarizing optical and scanning electron microscopy. By raising the CNC concentration in the initial suspension to the fully liquid crystalline range, a vertical helix orientation is promoted, as directed by the macroscopic phase boundaries. Further control of the helix orientation is achieved by subjecting the suspension to a circular shear flow during drying.
Langmuir | 2015
Christina Schütz; Michael Agthe; Andreas B. Fall; Korneliya Gordeyeva; Valentina Guccini; Michaela Salajkova; Tomás S. Plivelic; Jan P. F. Lagerwall; German Salazar-Alvarez; Lennart Bergström
The packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small-angle X-ray scattering (SAXS) and laser diffraction. The average separation distance between the CNCs and the average pitch of the chiral nematic phase have been determined over the entire isotropic-anisotropic biphasic region. The average separation distances range from 51 nm, at the onset of the anisotropic phase formation, to 25 nm above 6 vol % (fully liquid crystalline phase) whereas the average pitch varies from ≈15 μm down to ≈2 μm as ϕ increases from 2.5 up to 6.5 vol %. Using the cholesteric order, we determine that the twist angle between neighboring CNCs increases from about 1° up to 4° as ϕ increases from 2.5 up to 6.5 vol %. The dependence of the twisting on the volume fraction was related to the increase in the magnitude of the repulsive interactions between the charged rods as the average separation distance decreases.
Langmuir | 2017
Alican Gençer; Christina Schütz; Wim Thielemans
Cellulose nanocrystals (CNCs), ribbonlike crystalline nanoparticles, are a biobased material that can be a great alternative to obtaining films with tunable optical properties. Iridescent and light-diffracting films can be readily obtained via the drying of a suspension of these cellulose nanocrystals. The characteristics of the particle deposition process together with the self-assembly in the precluding suspension has a direct effect on the optical properties of the obtained films. Particle deposition onto a substrate is affected by the flow dynamics inside sessile droplets and usually yields a ring-shaped deposition pattern commonly referred to as the coffee-ring effect. We set out to measure and describe the drying kinetics under different conditions. We found that the Marangoni flow inside the droplet was too small to counteract the capillary flow that deposits CNCs at the edges, resulting in the coffee-ring effect, irrespective of the atmospheric humidity. By varying the amount of ethanol in the atmosphere, we were able to find a balance between (1) colloidal stability in the droplet, which is reduced by ethanol diffusion into the droplet, and (2) increasing Marangoni flow relative to capillary flow inside the droplet by changing the droplet surface tension. We could thus make iridescent films with a uniform thickness.
Langmuir | 2017
Salvatore Lombardo; Samuel Eyley; Christina Schütz; Hans Van Gorp; Sabine Rosenfeldt; Guy Van den Mooter; Wim Thielemans
The interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of substitution. The binding mechanism between the positively charged pyridinum-grafted cellulose nanocrystals and BSA was found to be endothermic and based on charge neutralization. A positive entropy of adsorption associated with an increase of the degree of disorder upon addition of BSA compensated for the unfavorable endothermic enthalpy and enabled formation of pyridinium-g-CNC-BSA complexes. The endothermic enthalpy of adsorption was further found to decrease as a function of increasing degree of substitution. Negatively charged cellulose nanocrystals bearing sulfate and/or carboxylic functionalities were found to not interact significantly with the BSA protein. To investigate in more detail the role of single amino acids in the adsorption of proteins onto cellulose nanocrystals, we also studied the interaction of different types of amino acids with CNCs, i.e., charged (lysine, aspartic acid), aromatic (tryptophan, tyrosine), and polar (serine) amino acids. We found that none of the single amino acids bound with CNCs irrespective of surface charge and that therefore the binding of proteins with CNCs appears to require larger amino acid sequences that induce a greater entropic contribution to stabilize binding. Single amino acids are thus not adsorbed onto cellulose nanocrystals.
Textile Research Journal | 2012
Mukta V. Limaye; Zoltán Bacsik; Christina Schütz; Aı̈ssata Dembelé; Mama Pléa; Linnéa Andersson; German Salazar-Alvarez; Lennart Bergström
We have investigated the chemistry of the Bogolan or mud cloth dyeing process, a traditional technique of coloring cotton cloths deeply rooted in Mali. Textiles produced by the traditional Bogolan process, using tannin-rich plant extract and iron-rich clay-based mud, were compared using infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray absorption near-edge spectroscopy (XANES) with cotton fibers that were impregnated with tannin and iron salt solutions. IR spectroscopy in both reflective mode on the cloth and cotton and in transmission mode on single fibers, together with SEM, showed that gallic and tannic acid adsorb and precipitate onto the cotton fiber surface. IR spectroscopy and comparison with tannin and iron solution-impregnated cotton showed that the black color of the traditional Bogolan cloth is dominated by the formation of iron-tannin complexes. The presence of iron in the Bogolan cloth was confirmed using XANES data, supporting the notion that iron has been transferred from the iron-rich clay-based mud to the cloth. The chemistry of Bogolan cloth is not only historically and culturally significant and of importance in textile conservation, but may also inspire future research on sustainable dyeing and processing techniques based on natural products.
Journal of Materials Chemistry | 2017
Masoud Farhadi-Khouzani; Christina Schütz; Grażyna M. Durak; J. Fornell; Jordi Sort; German Salazar-Alvarez; Lennart Bergström; Denis Gebauer
Nacre continues to be an inspiration for the fabrication of strong and tough materials from renewable and earth-abundant raw materials. Herein, we showed how a nacre-like hybrid material based on nanocellulose (NC) and CaCO3 can be prepared via the sequential infiltration of polymer-stabilised CaCO3 liquid precursors into layers of pre-deposited NC films. Layer-by-layer assembly of the NC films followed by controlled spreading and infiltration with liquid CaCO3 precursors generated a lamellar material with an architecture and iridescent appearance similar to those of nacre. The wettability of the NC films towards the liquid CaCO3 precursors was controlled by hydroxyl and carboxyl functionalization of the NC fibrils and the addition of magnesium ions. The combination of a high stiffness and plasticity of the nacre-like NC/CaCO3 hybrid materials show that excellent mechanical properties can be obtained employing a fibrillar organic constituent that is relatively hard. The fabrication of a nacre-like hybrid material via an aqueous route of assembly and infiltration processing demonstrates how a sustainable composite material with outstanding properties can be produced using the most abundant biopolymer and biomineral on earth.
Cellulose | 2016
Latifah Jasmani; Samuel Eyley; Christina Schütz; Hans Van Gorp; Steven De Feyter; Wim Thielemans
After successful cationization of cellulose nanocrystals (CNCs) to produce pyridinium-grafted-CNCs, a variety of different cationic CNCs were prepared using a similar procedure, thus unlocking access to a wide variety of cationized cellulose nanocrystals through a simple one-pot reaction. In this study, cationic CNCs were prepared through the use of 4-(1-bromoethyl)benzoic acid or 4-bromomethylbenzoic acid, p-toluenesulfonyl chloride, CNCs, and two different amines, 1-methylimidazole and 4-dimethylaminopyridine. The amines acted as both the base catalyst for the esterification and the nucleophile to form the cationic charge. This method offers a versatile and straightforward route to prepare a variety of different cationic nanocrystals and therefore tailor their interaction with their environment.
Npg Asia Materials | 2018
Camila Honorato-Rios; Claudius Lehr; Christina Schütz; Roland Sanctuary; M. A. Osipov; Jörg Baller; Jan P. F. Lagerwall
Colloids of electrically charged nanorods can spontaneously develop a fluid yet ordered liquid crystal phase, but this ordering competes with a tendency to form a gel of percolating rods. The threshold for ordering is reduced by increasing the rod aspect ratio, but the percolation threshold is also reduced with this change; hence, prediction of the outcome is nontrivial. Here, we show that by establishing the phase behavior of suspensions of cellulose nanocrystals (CNCs) fractionated according to length, an increased aspect ratio can strongly favor liquid crystallinity without necessarily influencing gelation. Gelation is instead triggered by increasing the counterion concentration until the CNCs lose colloidal stability, triggering linear aggregation, which promotes percolation regardless of the original rod aspect ratio. Our results shine new light on the competition between liquid crystal formation and gelation in nanoparticle suspensions and provide a path for enhanced control of CNC self-organization for applications in photonic crystal paper or advanced composites.Colloids: Shape determines organizationThe shape of nanoscale cellulose rods determines how they self-organize when suspended in water, show scientists in Luxembourg and the UK. Many interdependent factors determine whether the rods organize into a so-called liquid crystal state, dynamic and responsive, or if they are pinned in an immobile static gel. This makes it difficult to establish a clear understanding of the self-organization process. Jan Lagerwall from the University of Luxembourg and co-workers simplified the analysis by investigating a colloidal suspension of cellulose nanocrystals that spontaneously separates into rods of different length. They showed that colloids with a larger aspect ratio (the length of the nanorod divided by its diameter), favor a liquid-crystal state, but—contrary to expectation—they do this without promoting gelation. Such control of the self-organization of cellulose nanoparticles could enable more advanced composite materials.Fractionating nanorod suspensions by aspect ratio strongly affects liquid crystal formation without affecting gelation, in contrast to expectations from the classic percolation-based model. Gelation is rather triggered by increasing the counterion concentration until the CNCs lose colloidal stability. As a consequence, we significantly extend the regime where we can study equilibrium liquid crystal behavior without risking arrest into a gel state.