Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Sengstock is active.

Publication


Featured researches published by Christina Sengstock.


Journal of Materials Chemistry B | 2014

The dissolution and biological effects of silver nanoparticles in biological media

Kateryna Loza; Jörg Diendorf; Christina Sengstock; Luisa Ruiz-González; J.M. González-Calbet; María Vallet-Regí; M. Köller; Matthias Epple

Silver ions and silver nanoparticles have a well-known biological effect that typically occurs in biological or environmental media of complex composition. Silver nanoparticles release silver ions if oxidizing species like molecular oxygen or hydrogen peroxide are present. The presence of glucose as a model for reducing sugars has only a small effect on the dissolution rate. In the presence of chloride ions, precipitation of silver chloride nanoparticles occurs. At physiological salt concentrations, no precipitation of silver phosphate occurs as the precipitation of silver chloride always occurs first. If the surface of a silver nanoparticle is passivated by cysteine, the dissolution is quantitatively inhibited. Upon immersion of silver nanoparticles in pure water for 8 months, leading to about 50% dissolution, no change in the surface was observed by transmission electron microscopy. A model for the dissolution was derived from immersion and dissolution experiments in different media and from high-resolution transmission electron microscopy. A literature survey on the available data on the dissolution of silver nanoparticles showed that only qualitative trends can be identified as the nature of the nanoparticles and of the immersion medium are practically never comparable. The dissolution effects were confirmed by cell culture experiments (human mesenchymal stem cells and neutrophil granulocytes) where silver nanoparticles that were stored under argon had a clearly lower cytotoxicity than those stored under air. They also led to a less formation of reactive oxygen species (ROS). This underscores that silver ions are the toxic species.


Beilstein Journal of Nanotechnology | 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

Sebastian Ahlberg; Alexandra Antonopulos; Jörg Diendorf; Ralf Dringen; Matthias Epple; Rebekka Flöck; Wolfgang Goedecke; Christina Graf; Nadine Haberl; Jens Helmlinger; Fabian Herzog; Frederike Heuer; Stephanie Hirn; Christian Johannes; Stefanie Kittler; M. Köller; Katrin Korn; Wolfgang G. Kreyling; Fritz Krombach; Jürgen Lademann; Kateryna Loza; Eva M. Luther; Marcelina Malissek; Martina C. Meinke; Daniel Nordmeyer; Anne Pailliart; Jörg Raabe; Fiorenza Rancan; Barbara Rothen-Rutishauser; E. Rühl

Summary PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles.


Nanotechnology | 2014

Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

Christina Sengstock; Michael Lopian; Yahya Motemani; Anna Borgmann; Chinmay Khare; Pio John S. Buenconsejo; Thomas A. Schildhauer; Alfred Ludwig; M. Köller

The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs).Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.


RSC Advances | 2016

Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects

Jens Helmlinger; Christina Sengstock; Christoph Groß-Heitfeld; Christian Mayer; Thomas A. Schildhauer; M. Köller; Matthias Epple

The influence of silver nanoparticle morphology on the dissolution kinetics in ultrapure water as well as the biological effect on eukaryotic and prokaryotic cells was examined. Silver nanoparticles with different shapes but comparable size and identical surface functionalisation were prepared, i.e. spheres (diameter 40–80 and 120–180 nm; two different samples), platelets (20–60 nm), cubes (140–180 nm), and rods (diameter 80–120 nm, length > 1000 nm). All particles were purified by ultracentrifugation and colloidally stabilized with poly(N-vinyl pyrrolidone) (PVP). Their colloidal dispersion in ultrapure water and cell culture medium was demonstrated by dynamic light scattering. Size, shape, and colloidal stability were analysed by scanning electron microscopy, atomic force microscopy, dynamic light scattering, and differential centrifugal sedimentation. The dissolution in ultrapure water was proportional to the specific surface area of the silver nanoparticles. The averaged release rate for all particle morphologies was 30 ± 13 ng s−1 m−2 in ultrapure water (T = 25 ± 1 °C; pH 4.8; oxygen saturation 93%), i.e. about 10–20 times larger than the release of silver from a macroscopic silver bar (1 oz), possibly due to the presence of surface defects in the nanoparticulate state. All particles were taken up by human mesenchymal stem cells and were cytotoxic in concentrations of >12.5 μg mL−1, but there was no significant influence of the particle shape on the cytotoxicity towards the cells. Contrary to that, the toxicity towards bacteria increased with a higher dissolution rate, suggesting that the toxic species against bacteria are dissolved silver ions.


Beilstein Journal of Nanotechnology | 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation.

Christina Sengstock; Jörg Diendorf; Matthias Epple; Thomas A. Schildhauer; M. Köller

Summary Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter) were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions) but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions). Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of specific biomarkers, including adiponectin (adipocytes) and osteocalcin (osteoblasts). Conclusion: Aside from the well-studied antibacterial effect of silver, little is known about the influence of nano-silver on cell differentiation processes. Our results demonstrate that ionic or nanoparticulate silver attenuates the adipogenic and osteogenic differentiation of hMSCs even at non-toxic concentrations. Therefore, more studies are needed to investigate the effects of silver species on cells at low concentrations during long-term treatment.


RSC Advances | 2014

The predominant species of ionic silver in biological media is colloidally dispersed nanoparticulate silver chloride

Kateryna Loza; Christina Sengstock; Svitlana Chernousova; M. Köller; Matthias Epple

We have investigated the behaviour of silver ions in biologically relevant concentrations (10 to 100 ppm) in different media, from physiological salt solution over phosphate-buffered saline solution to protein-containing cell culture media. The results show that the initially present silver ions are bound as silver chloride due to the presence of chloride. Only in the absence of chloride, glucose is able to reduce Ag+ to Ag0. The precipitation of silver phosphate was not observed in any case. We conclude that the predominant silver species in biological media is dispersed nanoscopic silver chloride, surrounded by a protein corona which prevents the growth of the crystals and leads to colloidal stabilization. Therefore, in cell culture experiments where dissolved silver ions are studied in the upper ppm range, in fact the effect of colloidally dispersed silver chloride is observed. We have confirmed this by cell culture experiments (human mesenchymal stem cells; T-cells; monocytes) and bacteria (S. aureus) where the cells were incubated with synthetically prepared silver chloride nanoparticles (diameter ca. 100 nm). These were easily taken up by eukaryotic cells and showed the same toxic effect at the same silver concentration as ionic silver (as silver acetate). Therefore, nanoscopic silver chloride and not free ionic silver is the primary toxic species in biological media.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

V. Khalili; Jafar Khalil-Allafi; Christina Sengstock; Yahya Motemani; Alexander Paulsen; Jan Frenzel; Gunther Eggeler; M. Köller

Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application.


Langmuir | 2018

Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles

Christina Graf; Daniel Nordmeyer; Christina Sengstock; Sebastian Ahlberg; Jörg Diendorf; Jörg Raabe; Matthias Epple; M. Köller; Jürgen Lademann; Annika Vogt; Fiorenza Rancan; E. Rühl

The cellular uptake and dissolution of trigonal silver nanoprisms (edge length 42 ± 15 nm, thickness 8 ± 1 nm) and mostly spherical silver nanoparticles (diameter 70 ± 25 nm) in human mesenchymal stem cells (hMSCs) and human keratinocytes (HaCaT cells) were investigated. Both particles are stabilized by polyvinylpyrrolidone (PVP), with the prisms additionally stabilized by citrate. The nanoprisms dissolved slightly in pure water but strongly in isotonic saline or at pH 4, corresponding to the lowest limit for the pH during cellular uptake. The tips of the prisms became rounded within minutes due to their high surface energy. Afterward, the dissolution process slowed down due to the presence of both PVP stabilizing Ag{100} sites and citrate blocking Ag{111} sites. On the contrary, nanospheres, solely stabilized by PVP, dissolved within 24 h. These results correlate with the finding that particles in both cell types have lost >90% of their volume within 24 h. hMSCs took up significantly more Ag from nanoprisms than from nanospheres, whereas HaCaT cells showed no preference for one particle shape. This can be rationalized by the large cellular interaction area of the plateletlike nanoprisms and the bending stiffness of the cell membranes. hMSCs have a highly flexible cell membrane, resulting in an increased uptake of plateletlike particles. HaCaT cells have a membrane with a 3 orders of magnitude higher Youngs modulus than for hMSC. Hence, the energy gain due to the larger interaction area of the nanoprisms is compensated for by the higher energy needed for cell membrane deformation compared to that for spheres, leading to no shape preference.


Materials Science and Engineering: C | 2015

Antibacterial activity of microstructured Ag/Au sacrificial anode thin films.

Manfred R. Koller; Christina Sengstock; Yahya Motemani; Chinmay Khare; Pio John S. Buenconsejo; Jonathan Geukes; Thomas A. Schildhauer; Alfred Ludwig

Ten different Ag dot arrays (16 to 625 microstructured dots per square mm) were fabricated on a continuous Au thin film and for comparison also on Ti film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Escherichia coli and Staphylococcus aureus were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards both bacterial strains was induced by Ag dot arrays on fabricated Au thin film (sacrificial anode system for Ag), due to the release of Ag ions from dissolution of Ag dots in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag) which remained intact to the original dot shape. The required number of Ag dots on gold film to achieve complete bactericidal effects for both bacterial strains was seven times lower than that observed with Ag dot arrays on Ti film.


Materials Science and Engineering: C | 2017

Antibacterial activity of microstructured sacrificial anode thin films by combination of silver with platinum group elements (platinum, palladium, iridium)

M. Köller; Petri Bellova; Siyamak Memar Javid; Yahya Motemani; Chinmay Khare; Christina Sengstock; Thomas A. Schildhauer; Alfred Ludwig

Five different Ag dots arrays (16 to 400dots/mm2) were fabricated on a continuous platinum, palladium, or iridium thin film and for comparison also on titanium film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Staphylococcus aureus (S. aureus) were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards S. aureus was induced by Ag dot arrays on each of the platinum group thin film (sacrificial anode system for Ag) in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag). Among platinum group elements the Ir-Ag system exerted the highest antibacterial activity which was accompanied by most advanced dissolution of the Ag dots and Ag ion release compared to Ag dots on Pt or Pd.

Collaboration


Dive into the Christina Sengstock's collaboration.

Top Co-Authors

Avatar

M. Köller

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Matthias Epple

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kateryna Loza

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Diendorf

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Helmlinger

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge