Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Diendorf is active.

Publication


Featured researches published by Jörg Diendorf.


Journal of Materials Chemistry | 2010

The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles

S. Kittler; C. Greulich; Julia Susanne Gebauer; Jörg Diendorf; Lennart Treuel; L. Ruiz; J.M. González-Calbet; María Vallet-Regí; R. Zellner; M. Köller; Matthias Epple

Spherical silver nanoparticles with a diameter of 50 ± 20 nm and stabilized with either poly(N-vinylpyrrolidone) (PVP) or citrate were dispersed in different cell culture media: (i) pure RPMI, (ii) RPMI containing up to 10% of bovine serum albumin (BSA), and (iii) RPMI containing up to 10% of fetal calf serum (FCS). The agglomeration behavior of the nanoparticles was studied with dynamic light scattering and optical microscopy of individually tracked single particles. Whereas strong agglomeration was observed in pure RPMI and in the RPMI–BSA mixture within a few hours, the particles remained well dispersed in RPMI–FCS. In addition, the biological effect of PVP-stabilized silver nanoparticles and of silver ions on human mesenchymal stem cells (hMSCs) was studied in pure RPMI and also in RPMI–BSA and RPMI–FCS mixtures, respectively. Both proteins considerably increased the cell viability in the presence of silver ions and as well as silver nanoparticles, indicating a binding of silver by these proteins.


Acta Biomaterialia | 2011

Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells

C. Greulich; Jörg Diendorf; T. Simon; Gunther Eggeler; Matthias Epple; M. Köller

Silver nanoparticles (Ag-NP) are widely used due to their well-known antibacterial effects. In medicine Ag-NP have found applications as wound dressings, surgical instruments and bone substitute biomaterials, e.g. silver-containing calcium phosphate cements. Depending on the coating technique, during resorption of a biomaterial Ag-NP may come into close contact with body tissues, including human mesenchymal stem cells (hMSC). Despite the widespread uses of Ag-NP, there is a serious lack of information concerning their biological effects on human cells. In this study the uptake of Ag-NP into hMSC has been analyzed and the intracellular distribution of Ag-NP after exposure determined. Non-agglomerated (dispersed) Ag-NP from the cell culture medium were detected as agglomerates of nanoparticles within the hMSC by combined focused ion beam/scanning electron microscopy. The silver agglomerates were typically located in the perinuclear region, as determined by light microscopy. Specific staining of cellular structures (endo-lysosomes, nuclei, Golgi complex and endoplasmatic reticulum) using fluorescent probes showed that the silver nanoparticles occurred mainly within endo-lysosomal structures, not in the cell nucleus, endoplasmic reticulum or Golgi complex. Quantitative determination of the uptake of Ag-NP by flow cytometry (scattergram analysis) revealed a concentration-dependent uptake of the particles which was significantly inhibited by chlorpromazine and wortmannin but not by nystatin, indicating clathrin-dependent endocytosis and macropinocytosis as the primary uptake mechanisms.


Journal of Materials Chemistry B | 2014

The dissolution and biological effects of silver nanoparticles in biological media

Kateryna Loza; Jörg Diendorf; Christina Sengstock; Luisa Ruiz-González; J.M. González-Calbet; María Vallet-Regí; M. Köller; Matthias Epple

Silver ions and silver nanoparticles have a well-known biological effect that typically occurs in biological or environmental media of complex composition. Silver nanoparticles release silver ions if oxidizing species like molecular oxygen or hydrogen peroxide are present. The presence of glucose as a model for reducing sugars has only a small effect on the dissolution rate. In the presence of chloride ions, precipitation of silver chloride nanoparticles occurs. At physiological salt concentrations, no precipitation of silver phosphate occurs as the precipitation of silver chloride always occurs first. If the surface of a silver nanoparticle is passivated by cysteine, the dissolution is quantitatively inhibited. Upon immersion of silver nanoparticles in pure water for 8 months, leading to about 50% dissolution, no change in the surface was observed by transmission electron microscopy. A model for the dissolution was derived from immersion and dissolution experiments in different media and from high-resolution transmission electron microscopy. A literature survey on the available data on the dissolution of silver nanoparticles showed that only qualitative trends can be identified as the nature of the nanoparticles and of the immersion medium are practically never comparable. The dissolution effects were confirmed by cell culture experiments (human mesenchymal stem cells and neutrophil granulocytes) where silver nanoparticles that were stored under argon had a clearly lower cytotoxicity than those stored under air. They also led to a less formation of reactive oxygen species (ROS). This underscores that silver ions are the toxic species.


RSC Advances | 2012

The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range

C. Greulich; Dieter Braun; Alexander Peetsch; Jörg Diendorf; Bettina Siebers; Matthias Epple; M. Köller

Silver is commonly used both in ionic form and in nanoparticulate form as a bactericidal agent. This is generally ascribed to a higher toxicity towards prokaryotic cells than towards mammalian cells. Comparative studies with both silver ions (such as silver acetate) and polyvinylpyrrolidone (PVP)-stabilized silver nanoparticles (70 nm) showed that the toxic effect of silver occurs in a similar concentration range for Escherichia coli, Staphylococcus aureus, human mesenchymal stem cells (hMSCs), and peripheral blood mononuclear cells (PBMCs), i.e. 0.5 to 5 ppm for silver ions and 12.5 to 50 ppm for silver nanoparticles. For a better comparison, bacteria were cultivated both in Lysogeny broth medium (LB) and in Roswell Park Memorial Institute medium (RPMI)/10% fetal calf serum (FCS) medium, as the state of silver ions and silver nanoparticles may be different due to the presence of salts, and biomolecules like proteins. The effective toxic concentration of silver towards bacteria and human cells is almost the same.


Acta Biomaterialia | 2011

Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles

C. Greulich; Jörg Diendorf; J. Geßmann; T. Simon; T. Habijan; Gunther Eggeler; Thomas A. Schildhauer; Matthias Epple; M. Köller

Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.


Beilstein Journal of Nanotechnology | 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

Sebastian Ahlberg; Alexandra Antonopulos; Jörg Diendorf; Ralf Dringen; Matthias Epple; Rebekka Flöck; Wolfgang Goedecke; Christina Graf; Nadine Haberl; Jens Helmlinger; Fabian Herzog; Frederike Heuer; Stephanie Hirn; Christian Johannes; Stefanie Kittler; M. Köller; Katrin Korn; Wolfgang G. Kreyling; Fritz Krombach; Jürgen Lademann; Kateryna Loza; Eva M. Luther; Marcelina Malissek; Martina C. Meinke; Daniel Nordmeyer; Anne Pailliart; Jörg Raabe; Fiorenza Rancan; Barbara Rothen-Rutishauser; E. Rühl

Summary PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin with disrupted barrier (e.g., wounds) and induce oxidative stress in skin cells (HaCaT). In conclusion, the data obtained on the effects of this well-defined type of silver nanoparticles on various biological systems clearly demonstrate that cell-type specific properties as well as experimental conditions determine the biocompatibility of and the cellular responses to an exposure with silver nanoparticles.


Beilstein Journal of Nanotechnology | 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

Wolfgang G. Kreyling; Stefanie Fertsch-Gapp; Martin Schäffler; Blair D. Johnston; Nadine Haberl; Christian Pfeiffer; Jörg Diendorf; Carsten Schleh; Stephanie Hirn; Manuela Semmler-Behnke; Matthias Epple; Wolfgang J. Parak

Summary When particles incorporated within a mammalian organism come into contact with body fluids they will bind to soluble proteins or those within cellular membranes forming what is called a protein corona. This binding process is very complex and highly dynamic due to the plethora of proteins with different affinities and fractions in different body fluids and the large variation of compounds and structures of the particle surface. Interestingly, in the case of nanoparticles (NP) this protein corona is well suited to provide a guiding vehicle of translocation within body fluids and across membranes. This NP translocation may subsequently lead to accumulation in various organs and tissues and their respective cell types that are not expected to accumulate such tiny foreign bodies. Because of this unprecedented NP accumulation, potentially adverse biological responses in tissues and cells cannot be neglected a priori but require thorough investigations. Therefore, we studied the interactions and protein binding kinetics of blood serum proteins with a number of engineered NP as a function of their physicochemical properties. Here we show by in vitro incubation tests that the binding capacity of different engineered NP (polystyrene, elemental carbon) for selected serum proteins depends strongly on the NP size and the properties of engineered surface modifications. In the following attempt, we studied systematically the effect of the size (5, 15, 80 nm) of gold spheres (AuNP), surface-modified with the same ionic ligand; as well as 5 nm AuNP with five different surface modifications on the binding to serum proteins by using proteomics analyses. We found that the binding of numerous serum proteins depended strongly on the physicochemical properties of the AuNP. These in vitro results helped us substantially in the interpretation of our numerous in vivo biokinetics studies performed in rodents using the same NP. These had shown that not only the physicochemical properties determined the AuNP translocation from the organ of intake towards blood circulation and subsequent accumulation in secondary organs and tissues but also the the transport across organ membranes depended on the route of AuNP application. Our in vitro protein binding studies support the notion that the observed differences in in vivo biokinetics are mediated by the NP protein corona and its dynamical change during AuNP translocation in fluids and across membranes within the organism.


Beilstein Journal of Nanotechnology | 2013

Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats

Nadine Haberl; Stephanie Hirn; Alexander Wenk; Jörg Diendorf; Matthias Epple; Blair D. Johnston; Fritz Krombach; Wolfgang G. Kreyling; Carsten Schleh

Summary Silver nanoparticles (AgNP) are among the most promising nanomaterials, and their usage in medical applications and consumer products is growing rapidly. To evaluate possible adverse health effects, especially to the lungs, the current study focused on the cytotoxic and proinflammatory effects of AgNP after the intratracheal instillation in rats. Monodisperse, PVP-coated AgNP (70 nm) showing little agglomeration in aqueous suspension were instilled intratracheally. After 24 hours, the lungs were lavaged, and lactate dehydrogenase (LDH), total protein, and cytokine levels as well as total and differential cell counts were measured in the bronchoalveolar lavage fluid (BALF). Instillation of 50 µg PVP-AgNP did not result in elevated LDH, total protein, or cytokine levels in BALF compared to the control, whereas instillation of 250 µg PVP-AgNP caused a significant increase in LDH (1.9-fold) and total protein (1.3-fold) levels as well as in neutrophil numbers (60-fold) of BALF. Furthermore, while there was no change in BALF cytokine levels after the instillation of 50 µg PVP-AgNP, instillation of 250 µg PVP-AgNP resulted in significantly increased levels of seven out of eleven measured cytokines. These finding suggest that exposure to inhaled AgNP can induce moderate pulmonary toxicity, but only at rather high concentrations.


Journal of Nanoparticle Research | 2012

Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles

Lennart Treuel; Marcelina Malissek; Stefan Grass; Jörg Diendorf; Dirk Mahl; Wolfgang Meyer-Zaika; Matthias Epple

When nanoparticles (NPs) come into contact with biological fluids, proteins, and other biomolecules interact with their surface. Upon exposure to biological fluids a layer of proteins adsorbs onto their surface, the so-called protein corona, and interactions of biological systems with NPs are therefore mediated by this corona. Here, interactions of serum albumin with silver and gold NPs were quantitatively investigated using circular dichroism spectroscopy. Moreover, surface enhanced Raman spectroscopy was used for further elucidation of protein binding to silver surfaces. The decisive role of poly(vinylpyrrolidone), coatings on the protein adsorption was quantitatively described for the first time and the influential role of the polymer coatings is discussed. Research in nanotoxicology may benefit from such molecular scale data as well as scientific approaches seeking to improve nanomedical applications by using a wide range of polymer surface coatings to optimize biological transport and medical action of NPs.


Beilstein Journal of Nanotechnology | 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation.

Christina Sengstock; Jörg Diendorf; Matthias Epple; Thomas A. Schildhauer; M. Köller

Summary Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products have been coated with Ag-NP. For example, various medical devices include silver, such as surgical instruments, bone implants and wound dressings. After the degradation of these materials, or depending on the coating technique, silver in nanoparticle or ion form can be released and may come into close contact with tissues and cells. Despite incorporation of Ag-NP as an antibacterial agent in different products, the toxicological and biological effects of silver in the human body after long-term and low-concentration exposure are not well understood. In the current study, we investigated the effects of both ionic and nanoparticulate silver on the differentiation of human mesenchymal stem cells (hMSCs) into adipogenic, osteogenic and chondrogenic lineages and on the secretion of the respective differentiation markers adiponectin, osteocalcin and aggrecan. Results: As shown through laser scanning microscopy, Ag-NP with a size of 80 nm (hydrodynamic diameter) were taken up into hMSCs as nanoparticulate material. After 24 h of incubation, these Ag-NP were mainly found in the endo-lysosomal cell compartment as agglomerated material. Cytotoxicity was observed for differentiated or undifferentiated hMSCs treated with high silver concentrations (≥20 µg·mL−1 Ag-NP; ≥1.5 µg·mL−1 Ag+ ions) but not with low-concentration treatments (≤10 µg·mL−1 Ag-NP; ≤1.0 µg·mL−1 Ag+ ions). Subtoxic concentrations of Ag-NP and Ag+ ions impaired the adipogenic and osteogenic differentiation of hMSCs in a concentration-dependent manner, whereas chondrogenic differentiation was unaffected after 21 d of incubation. In contrast to aggrecan, the inhibitory effect of adipogenic and osteogenic differentiation was confirmed by a decrease in the secretion of specific biomarkers, including adiponectin (adipocytes) and osteocalcin (osteoblasts). Conclusion: Aside from the well-studied antibacterial effect of silver, little is known about the influence of nano-silver on cell differentiation processes. Our results demonstrate that ionic or nanoparticulate silver attenuates the adipogenic and osteogenic differentiation of hMSCs even at non-toxic concentrations. Therefore, more studies are needed to investigate the effects of silver species on cells at low concentrations during long-term treatment.

Collaboration


Dive into the Jörg Diendorf's collaboration.

Top Co-Authors

Avatar

Matthias Epple

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

M. Köller

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

C. Greulich

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kateryna Loza

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Christina Graf

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Dirk Mahl

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

E. Rühl

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge