Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christina Warinner is active.

Publication


Featured researches published by Christina Warinner.


Nature Communications | 2015

Subsistence strategies in traditional societies distinguish gut microbiomes

Alexandra J. Obregon-Tito; Raul Y. Tito; Jessica L. Metcalf; Krithivasan Sankaranarayanan; Jose C. Clemente; Luke K. Ursell; Zhenjiang Zech Xu; Will Van Treuren; Rob Knight; Patrick M. Gaffney; Paul Spicer; Paul A. Lawson; Luis Marin-Reyes; Omar Trujillo-Villarroel; Morris W. Foster; Emilio Guija-Poma; Luzmila Troncoso-Corzo; Christina Warinner; Andrew T. Ozga; Cecil M. Lewis

Recent studies suggest that gut microbiomes of urban-industrialized societies are different from those of traditional peoples. Here we examine the relationship between lifeways and gut microbiota through taxonomic and functional potential characterization of faecal samples from hunter-gatherer and traditional agriculturalist communities in Peru and an urban-industrialized community from the US. We find that in addition to taxonomic and metabolic differences between urban and traditional lifestyles, hunter-gatherers form a distinct sub-group among traditional peoples. As observed in previous studies, we find that Treponema are characteristic of traditional gut microbiomes. Moreover, through genome reconstruction (2.2–2.5 MB, coverage depth × 26–513) and functional potential characterization, we discover these Treponema are diverse, fall outside of pathogenic clades and are similar to Treponema succinifaciens, a known carbohydrate metabolizer in swine. Gut Treponema are found in non-human primates and all traditional peoples studied to date, suggesting they are symbionts lost in urban-industrialized societies.


Philosophical Transactions of the Royal Society B | 2014

A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome

Christina Warinner; Camilla Speller; Matthew J. Collins

The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes.


Rapid Communications in Mass Spectrometry | 2008

Organic oxygen and hydrogen isotopes in a porcine controlled dietary study

Noreen Tuross; Christina Warinner; Karola Kirsanow; Cynthia Kester

Controlled feeding studies have been useful in assessing the relationship between isotope values from dietary sources and consumer tissues. We report the organic oxygen and hydrogen values of animal tissue from a porcine controlled dietary study. A complex mixture of fractionation and incorporation is revealed. In both deltaD and delta(18)O, differences in the absolute values and the amount of variation between and within consumer tissue are documented. Significant differences in deltaD and delta(18)O are observed between protein sources such as keratin and collagen.


Scientific Reports | 2015

Direct evidence of milk consumption from ancient human dental calculus

Christina Warinner; Jessica Hendy; Camilla Speller; Enrico Cappellini; R. Fischer; Christian Trachsel; Jette Arneborg; Niels Lynnerup; Oliver E. Craig; Dallas M. Swallow; Anna K. Fotakis; R. J. Christensen; J. Olsen; Anke Liebert; Nicolas Montalva; Sarah Fiddyment; Sophy Charlton; Meaghan Mackie; A. Canci; Abigail Bouwman; Frank J. Rühli; M.T.P. Gilbert; Matthew J. Collins

Milk is a major food of global economic importance, and its consumption is regarded as a classic example of gene-culture evolution. Humans have exploited animal milk as a food resource for at least 8500 years, but the origins, spread, and scale of dairying remain poorly understood. Indirect lines of evidence, such as lipid isotopic ratios of pottery residues, faunal mortality profiles, and lactase persistence allele frequencies, provide a partial picture of this process; however, in order to understand how, where, and when humans consumed milk products, it is necessary to link evidence of consumption directly to individuals and their dairy livestock. Here we report the first direct evidence of milk consumption, the whey protein β-lactoglobulin (BLG), preserved in human dental calculus from the Bronze Age (ca. 3000 BCE) to the present day. Using protein tandem mass spectrometry, we demonstrate that BLG is a species-specific biomarker of dairy consumption, and we identify individuals consuming cattle, sheep, and goat milk products in the archaeological record. We then apply this method to human dental calculus from Greenlands medieval Norse colonies, and report a decline of this biomarker leading up to the abandonment of the Norse Greenland colonies in the 15th century CE.


American Journal of Physical Anthropology | 2009

Brief communication: Tissue isotopic enrichment associated with growth depression in a pig: Implications for archaeology and ecology

Christina Warinner; Noreen Tuross

Stressors such as fasting or poor diet quality are thought to potentially alter the nitrogen and carbon isotopic values of animal tissues. In this study, we demonstrate an inverse correlation between growth rate and multiple tissue enrichment of delta(15)N, delta(13)C, and, to a lesser degree, delta(18)O in a juvenile pig. A more complex pattern is observed with respect to tissue deltaD and growth rate. The observed association between growth rate and tissue isotopic fractionation has important implications for paleodietary and migratory reconstructions of archaeological populations that may have been affected by famine, malnutrition, seasonal variation in food availability, and/or other factors that can affect childhood growth rates.


Journal of Human Evolution | 2015

Ancient human microbiomes

Christina Warinner; Camilla Speller; Matthew J. Collins; Cecil M. Lewis

Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.


Scientific Reports | 2015

Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

Kirsten Ziesemer; Allison E. Mann; Krithivasan Sankaranarayanan; Hannes Schroeder; Andrew T. Ozga; Bernd W. Brandt; Egija Zaura; Andrea L. Waters-Rist; Menno Hoogland; Domingo C. Salazar-García; Mark Aldenderfer; Camilla Speller; Jessica Hendy; Darlene A. Weston; Sandy J. MacDonald; Gavin H. Thomas; Matthew J. Collins; Cecil M. Lewis; Corinne L. Hofman; Christina Warinner

To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.


PLOS ONE | 2014

Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in medieval Central Europe

Annina Krüttli; Abigail Bouwman; Gülfirde Akgül; Philippe Della Casa; Frank J. Rühli; Christina Warinner

Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies. These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71–80%, our results suggest that genetic lactase persistence likely reached modern levels before the historic population declines associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in this region. This new evidence sheds light on the dynamic evolutionary history of the European lactase persistence trait and its global cultural implications.


Current Anthropology | 2013

Is poverty in our genes? A critique of Ashraf and Galor, "The 'out of Africa' hypothesis, human genetic diversity, and comparative economic development," American Economic Review (Forthcoming)

Jade d'Alpoim Guedes; Theodore C. Bestor; David Carrasco; Rowan Flad; Ethan Fosse; Michael Herzfeld; C. C. Lamberg-Karlovsky; Cecil M. Lewis; Matthew Liebmann; Richard H. Meadow; Nick Patterson; Max Price; Meredith W. Reiches; Sarah S. Richardson; Heather Shattuck-Heidorn; Jason Ur; Gary Urton; Christina Warinner

We present a critique of a paper written by two economists, Quamrul Ashraf and Oded Galor, which is forthcoming in the American Economic Review and which was uncritically highlighted in Science magazine. Their paper claims there is a causal effect of genetic diversity on economic success, positing that too much or too little genetic diversity constrains development. In particular, they argue that “the high degree of diversity among African populations and the low degree of diversity among Native American populations have been a detrimental force in the development of these regions.” We demonstrate that their argument is seriously flawed on both factual and methodological grounds. As economists and other social scientists begin exploring newly available genetic data, it is crucial to remember that nonexperts broadcasting bold claims on the basis of weak data and methods can have profoundly detrimental social and political effects.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc

Choongwon Jeong; Andrew T. Ozga; David B. Witonsky; Helena Malmström; Hanna Edlund; Courtney A. Hofman; Richard Hagan; Mattias Jakobsson; Cecil M. Lewis; Mark Aldenderfer; Anna Di Rienzo; Christina Warinner

Significance Since prehistory, the Himalayan mountain range has presented a formidable barrier to population migration, whereas at the same time its transverse valleys have long served as conduits for trade and exchange. Yet, despite the economic and cultural importance of Himalayan trade routes, little is known about the region’s peopling and early population history. In this study, we conduct to our knowledge the first ancient DNA investigation of the Himalayan arc and generate genome data for eight individuals ranging in time from the earliest known human settlements to the establishment of the Tibetan Empire. We demonstrate that the region was colonized by East Asians of likely high-altitude origin, followed by millennia of genetic continuity despite marked changes in material culture and mortuary behavior. The high-altitude transverse valleys [>3,000 m above sea level (masl)] of the Himalayan arc from Arunachal Pradesh to Ladahk were among the last habitable places permanently colonized by prehistoric humans due to the challenges of resource scarcity, cold stress, and hypoxia. The modern populations of these valleys, who share cultural and linguistic affinities with peoples found today on the Tibetan plateau, are commonly assumed to be the descendants of the earliest inhabitants of the Himalayan arc. However, this assumption has been challenged by archaeological and osteological evidence suggesting that these valleys may have been originally populated from areas other than the Tibetan plateau, including those at low elevation. To investigate the peopling and early population history of this dynamic high-altitude contact zone, we sequenced the genomes (0.04×–7.25×, mean 2.16×) and mitochondrial genomes (20.8×–1,311.0×, mean 482.1×) of eight individuals dating to three periods with distinct material culture in the Annapurna Conservation Area (ACA) of Nepal, spanning 3,150–1,250 y before present (yBP). We demonstrate that the region is characterized by long-term stability of the population genetic make-up despite marked changes in material culture. The ancient genomes, uniparental haplotypes, and high-altitude adaptive alleles suggest a high-altitude East Asian origin for prehistoric Himalayan populations.

Collaboration


Dive into the Christina Warinner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge