Christine Bäuerl
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Bäuerl.
Gut microbes | 2012
Maria Carmen Collado; María Cernada; Christine Bäuerl; Máximo Vento; Gaspar Pérez-Martínez
The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life.
Journal of Molecular Microbiology and Biotechnology | 2010
Christine Bäuerl; Gaspar Pérez-Martínez; Fang Yan; D. Brent Polk; Vicente Monedero
The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria
Beneficial Microbes | 2014
G. Pérez Martínez; Christine Bäuerl; Maria Carmen Collado
Today, advances in the public health system of most countries have managed to extend notably life expectancy, however, elderlys health remain as a very serious concern. The lifelong stimulation of innate and adaptive immune systems leads to immunosenescence and, as result, to a low ability to produce immunoglobulins against pathogens but also to a low-grade chronic inflammatory state (inflammaging) that is linked to most age-related health problems, such as dementia, Alzheimer or atherosclerosis. This inflammatory state could make the host more sensitive to intestinal microbes, or vice versa, as changes in the gut microbiota composition are related to the progression of diseases and frailty in the elderly population. It was considered that gut microbiota changed during aging, with an increase of Bacteroidetes vs. Firmicutes proportion and a reduction of bifidobacterial counts, however recent studies reported a great inter-individual variation among elderly and a significant relationship between gut microbiota, diet and institution or community living. Intervention studies of probiotics and prebiotics in elderly are not very abundant, but most cases showed that Bifidobacterium populations can efficiently be stimulated with a concomitant decrease of Enterobacteria. Furthermore, also some studies demonstrated that probiotics decreased the synthesis of pro-inflammatory cytokines which are upregulated in the elderly, such as interleukin (IL)-8, IL-6 or tumour necrosis factor ?, among others, and they increased the levels of activated lymphocytes, natural killer cells, phagocytic activity and even showed a greater response to influenza vaccination. This suggests that direct manipulation of the gut microbiota may improve adaptive immune response and reduce inflammatory secretions, therefore compensating immunosenescence effects, however, there are no records of their effect on clinical symptoms or risk for disease. Those facts reveal that this is an open research field with very good scientific perspectives and above all they could bring likely improvements in the wellbeing of our seniors.
Pediatrics | 2014
María Cernada; Eva Serna; Christine Bäuerl; Maria Carmen Collado; Gaspar Pérez-Martínez; Máximo Vento
BACKGROUND: Bacterial sepsis is associated with high morbidity and mortality in preterm infants. However, diagnosis of sepsis and identification of the causative agent remains challenging. Our aim was to determine genome-wide expression profiles of very low birth weight (VLBW) infants with and without bacterial sepsis and assess differences. METHODS: This was a prospective observational double-cohort study conducted in VLBW (<1500 g) infants with culture-positive bacterial sepsis and non-septic matched controls. Blood samples were collected as soon as clinical signs of sepsis were identified and before antibiotics were initiated. Total RNA was processed for genome-wide expression analysis using Affymetrix gene arrays. RESULTS: During a 19-month period, 17 septic VLBW infants and 19 matched controls were enrolled. First, a three-dimensional unsupervised principal component analysis based on the entire genome (28 000 transcripts) identified 3 clusters of patients based on gene expression patterns: Gram-positive sepsis, Gram-negative sepsis, and noninfected control infants. Furthermore, these groups were confirmed by using analysis of variance, which identified a transcriptional signature of 554 of genes. These genes had a significantly different expression among the groups. Of the 554 identified genes, 66 belonged to the tumor necrosis factor and 56 to cytokine signaling. The most significantly overexpressed pathways in septic neonates related with innate immune and inflammatory responses and were validated by real-time reverse transcription polymerase chain reaction. CONCLUSIONS: Our preliminary results suggest that genome-wide expression profiles discriminate septic from nonseptic VLBW infants early in the neonatal period. Further studies are needed to confirm these findings.
Genes and Nutrition | 2013
Christine Bäuerl; Marta Llopis; Maria Antolin; Vicente Monedero; Manuel Mata; Manuel Zúñiga; Francisco Guarner; Gaspar Pérez Martínez
Significant health benefits have been demonstrated for certain probiotic strains through intervention studies; however, there is a shortage of experimental evidence relative to the mechanisms of action. Here, noninvasive experimental procedure based on a colon organ culture system has been used that, in contrast to most experimental in vitro models reported, can preserve natural immunohistochemical features of the human mucosa. This system has been used to test whether commensal lactobacilli (Lactobacillus paracasei BL23, Lactobacillus plantarum 299v and L. plantarum 299v (A−)) were able to hinder inflammation-like signals induced by phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO). Whole genome microarrays have been applied to analyze expression differences, from which mRNA markers could be inferred to monitor the effect of putative probiotic strains under such conditions. Regarding the gene expression, PMA/IO treatment induced not only interleukin (IL)-2 and interferon gamma (IFN-γ), as expected, but also other relevant genes related to immune response and inflammation, such as IL-17A, chemokine (C-X-C motif) ligand (CXCL) 9 and CXCL11. The ex vivo culturing did not modify the pattern of expression of those genes or others related to inflammation. Interestingly, this study demonstrated that lactobacilli downregulated those genes and triggered a global change of the transcriptional profile that indicated a clear homeostasis restoring effect and a decrease in signals produced by activated T cells.
PLOS ONE | 2014
Christine Bäuerl; M. Carmen Collado; Manuel Zúñiga; Enrique Blas; Gaspar Pérez Martínez
Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics), followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, γ-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin) Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding.
Scientific Reports | 2016
María Cernada; Christine Bäuerl; Eva Serna; Maria Carmen Collado; Gaspar Pérez Martínez; Máximo Vento
Sepsis is a life-threatening condition in preterm infants. Neonatal microbiota plays a pivotal role in the immune system maturation. Changes in gut microbiota have been associated to inflammatory disorders; however, a link with sepsis in the neonatal period has not yet been established. We aimed to analyze gut microbiota and mucosal gene expression using non-invasively obtained samples to provide with an integrative perspective of host-microbe interactions in neonatal sepsis. For this purpose, a prospective observational case-control study was conducted in septic preterm dizygotic twins and their non-septic twin controls. Fecal samples were used for both microbiota analysis and host genome-wide expression using exfoliated intestinal cells. Gene expression of exfoliated intestinal cells in septic preterm showed an induction of inflammatory and oxidative stress pathways in the gut and pro-oxidant profile that caused dysbiosis in the gut microbiota with predominance of Enterobacteria and reduction of Bacteroides and Bifidobacterium spp.in fecal samples, leading to a global reduction of beneficial anaerobic bacteria. Sepsis in preterm infants induced low-grade inflammation and oxidative stress in the gut mucosa, and also changes in the gut microbiota. This study highlights the role of inflammation and oxidative stress in neonatal sepsis on gut microbial profiles.
PLOS ONE | 2016
Özgün Candan Onarman Umu; Christine Bäuerl; Marije Oostindjer; Phillip B. Pope; Pablo E. Hernández; Gaspar Pérez-Martínez; Dzung B. Diep
Production of bacteriocins is a potential probiotic feature of many lactic acid bacteria (LAB) as it can help prevent the growth of pathogens in gut environments. However, knowledge on bacteriocin producers in situ and their function in the gut of healthy animals is still limited. In this study, we investigated five bacteriocin-producing strains of LAB and their isogenic non-producing mutants for probiotic values. The LAB bacteriocins, sakacin A (SakA), pediocin PA-1 (PedPA-1), enterocins P, Q and L50 (enterocins), plantaricins EF and JK (plantaricins) and garvicin ML (GarML), are all class II bacteriocins, but they differ greatly from each other in terms of inhibition spectrum and physicochemical properties. The strains were supplemented to mice through drinking water and changes on the gut microbiota composition were interpreted using 16S rRNA gene analysis. In general, we observed that overall structure of the gut microbiota remained largely unaffected by the treatments. However, at lower taxonomic levels, some transient but advantageous changes were observed. Some potentially problematic bacteria were inhibited (e.g., Staphylococcus by enterocins, Enterococcaceae by GarML, and Clostridium by plantaricins) and the proportion of LAB was increased in the presence of SakA-, plantaricins- and GarML-producing bacteria. Moreover, the treatment with GarML-producing bacteria co-occurred with decreased triglyceride levels in the host mice. Taken together, our results indicate that several of these bacteriocin producers have potential probiotic properties at diverse levels as they promote favorable changes in the host without major disturbance in gut microbiota, which is important for normal gut functioning.
Microbial Ecology in Health and Disease | 2012
Maria Carmen Collado; Christine Bäuerl; Gaspar Pérez-Martínez
The human body harbors complex communities of microbes that play a prominent role in human health. Detailed characterization of the microbiota in the target population forms the basis of probiotic use. Probiotics are defined as live bacterial preparations with clinically documented health effects in humans, and independent of their genus and species, probiotic strains are unique and their beneficial properties on human health have to be assessed in a case-by-case manner. Understanding the mechanisms by which probiotics influence microbiota would facilitate the use of probiotics for both dietary management and reduction in risk of specific diseases. The development of high throughput sequencing methods has allowed metagenomic approaches to study the human microbiome. These efforts are starting to generate an inventory of bacterial taxons and functional features bound to particular health or disease status that allow inferring aspects of the microbiomes function. In the future, this information will allow the rational design of dietary interventions aimed to improve consumers health via modulation of the microbiota.
Molecular Microbiology | 2016
Cristina Alcántara; Christine Bäuerl; Ainhoa Revilla-Guarinos; Gaspar Pérez-Martínez; Vicente Monedero; Manuel Zúñiga
A Lactobacillus casei BL23 strain defective in an OmpR‐family response regulator encoded by LCABL_18980 (PrcR, RR11), showed enhanced proteolytic activity caused by overexpression of the gene encoding the proteinase PrtP. Transcriptomic analysis revealed that, in addition to prtP expression, PrcR regulates genes encoding peptide and amino acid transporters, intracellular peptidases and amino acid biosynthetic pathways, among others. Binding of PrcR to twelve promoter regions of both upregulated and downregulated genes, including its own promoter, was demonstrated by electrophoretic mobility shift assays showing that PrcR can act as a transcriptional repressor or activator. Phosphorylation of PrcR increased its DNA binding activity and this effect was abolished after replacement of the phosphorylatable residue Asp‐52 by alanine. Comparison of the transcript levels in cells grown in the presence or absence of tryptone in the growth medium revealed that PrcR activity responded to the presence of a complex amino acid source in the growth medium. We conclude that the PrcR plays a major role in the control of the peptide and amino acid metabolism in L. casei BL23. Orthologous prcR genes are present in most members of the Lactobacillaceae and Leuconostocaceae families. We hypothesize that they play a similar role in these bacterial groups.