Vicente Monedero
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vicente Monedero.
Journal of Bacteriology | 2010
Alain Mazé; Grégory Boël; Manuel Zúñiga; Alexa Bourand; Valentin Loux; María J. Yebra; Vicente Monedero; Karine Correia; Noémie Jacques; Sophie Beaufils; Sandrine Poncet; Philippe Joyet; Eliane Milohanic; Serge Casaregola; Yanick Auffray; Gaspar Pérez-Martínez; Jean-François Gibrat; Monique Zagorec; Christof Francke; Axel Hartke; Josef Deutscher
The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Ivan Mijakovic; Sandrine Poncet; Anne Galinier; Vicente Monedero; Sonia Fieulaine; Joël Janin; Sylvie Nessler; José Antonio Marquez; Klaus Scheffzek; Sonja Hasenbein; Wolfgang Hengstenberg; Josef Deutscher
In most Gram-positive bacteria, serine-46-phosphorylated HPr (P-Ser-HPr) controls the expression of numerous catabolic genes (≈10% of their genome) by acting as catabolite corepressor. HPr kinase/phosphorylase (HprK/P), the bifunctional sensor enzyme for catabolite repression, phosphorylates HPr, a phosphocarrier protein of the sugar-transporting phosphoenolpyruvate/glycose phosphotransferase system, in the presence of ATP and fructose-1,6-bisphosphate but dephosphorylates P-Ser-HPr when phosphate prevails over ATP and fructose-1,6-bisphosphate. We demonstrate here that P-Ser-HPr dephosphorylation leads to the formation of HPr and pyrophosphate. HprK/P, which binds phosphate at the same site as the β phosphate of ATP, probably uses the inorganic phosphate to carry out a nucleophilic attack on the phosphoryl bond in P-Ser-HPr. HprK/P is the first enzyme known to catalyze P-protein dephosphorylation via this phospho–phosphorolysis mechanism. This reaction is reversible, and at elevated pyrophosphate concentrations, HprK/P can use pyrophosphate to phosphorylate HPr. Growth of Bacillus subtilis on glucose increased intracellular pyrophosphate to concentrations (≈6 mM), which in in vitro tests allowed efficient pyrophosphate-dependent HPr phosphorylation. To effectively dephosphorylate P-Ser-HPr when glucose is exhausted, the pyrophosphate concentration in the cells is lowered to 1 mM. In B. subtilis, this might be achieved by YvoE. This protein exhibits pyrophosphatase activity, and its gene is organized in an operon with hprK.
Journal of Bacteriology | 2000
Valérie Dossonnet; Vicente Monedero; Monique Zagorec; Anne Galinier; Gaspar Pérez-Martínez; Josef Deutscher
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.
Microbes and Infection | 2006
Maria Leonor S. Oliveira; Ana Paula Mattos Arêas; Ivana B. Campos; Vicente Monedero; Gaspar Pérez-Martínez; Eliane N. Miyaji; Luciana C.C. Leite; Karina Araújo Aires; Paulo Lee Ho
Abstract Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results. In this work, Streptococcus pneumoniae PsaA antigen was expressed in different species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus helveticus. After nasal inoculation of C57Bl/6 mice, their ability to induce both systemic (IgG in serum) and mucosal (IgA in saliva, nasal and bronchial washes) anti-PsaA antibodies was determined. Immunization with L. lactis MG1363 induced very low levels of IgA and IgG, possibly by the low amount of PsaA expressed in this strain and its short persistence in the nasal mucosa. All three lactobacilli persisted in the nasal mucosa for 3days and produced a similar amount of PsaA protein (150–250ng per 109 CFU). However, L. plantarum NCDO1193 and L. helveticus ATCC15009 elicited the highest antibody response (IgA and IgG). Vaccination with recombinant lactobacilli but not with recombinant L. lactis led to a decrease in S. pneumoniae recovery from nasal mucosa upon a colonization challenge. Our results confirm that certain Lactobacillus strains have intrinsic properties that make them suitable candidates for mucosal vaccination experiments.
Microbiology | 1994
Ana Veyrat; Vicente Monedero; Gaspar Pérez-Martínez
A 2-deoxy-D-glucose-resistant mutant of a pLZ15-cured derivative of Lactobacillus casei ATCC 393 was isolated on agar medium containing 10 mM 2-deoxy-D-glucose and 5 g lactose I-1. The mutant was impaired in the main glucose transport mechanism, a PTSman-type system. Additionally a proton-motive-force-dependent glucose permease was detected. The growth response and the sugar consumption rates of the wild-type and the PTSman-deficient mutant suggested that the mutated element of the complex IIABCman was, in the wild-type, responsible for a strong repression by glucose and mannose of the lactose and ribose assimilation genes, while assimilation of galactose was only weakly repressed. It is postulated that they are regulated by a different mechanism of catabolite repression.
Archives of Microbiology | 2009
Diego Muñoz-Provencio; Marta Llopis; Maria Antolin; Inés de Torres; Francisco Guarner; Gaspar Pérez-Martínez; Vicente Monedero
Adhesion to intestinal epithelium is an outcome property for the selection of probiotic lactic acid bacteria strains. We have analyzed the adhesion properties of a collection of Lactobacillus casei strains from different origins, ranging from cheese isolates to commercial probiotics. Analysis of the surface characteristics of the strains by measuring adhesion to solvents (MATS test) showed that most of the strains have a basic and hydrophobic surface. The strains were able to bind ex vivo to human colon fragments at different levels and, in most cases, this adhesion correlated with the ability to in vitro binding of mucin. Attachment to this later substrate was not enhanced by growing the cells in the presence of mucin and was independent of proteinaceous factors. On the contrary, adhesion to other extracellular matrix components, such as collagen, fibronectin, or fibrinogen was partially or totally dependent on the presence of surface proteins. These results show that most of L. casei strains have in their surfaces factors that promote binding to intestinal epithelium, however, no clear correlation appears to exist between the origin of the strains and their adhesion capacities.
Journal of Bacteriology | 2001
Vicente Monedero; Oscar P. Kuipers; Emmanuel Jamet; Josef Deutscher
In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a beta-glucoside-specific EII and a 6-P-beta-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methyl beta-D-thiogalactoside (TMG) and 2-deoxy-D-glucose (2-DG). In vivo experiments with the ptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.
Applied and Environmental Microbiology | 2007
María J. Yebra; Manuel Zúñiga; Sophie Beaufils; Gaspar Pérez-Martínez; Josef Deutscher; Vicente Monedero
ABSTRACT Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23.
Journal of Molecular Microbiology and Biotechnology | 2010
Christine Bäuerl; Gaspar Pérez-Martínez; Fang Yan; D. Brent Polk; Vicente Monedero
The genomes of Lactobacillus casei/paracasei and Lactobacillus rhamnosus strains carry two genes encoding homologues of p40 and p75 from L. rhamnosus GG, two secreted proteins which display anti-apoptotic and cell protective effects on human intestinal epithelial cells. p40 and p75 carry cysteine, histidine-dependent aminohydrolase/peptidase (CHAP) and NLPC/P60 domains, respectively, which are characteristic of proteins with cell-wall hydrolase activity. In L. casei BL23 both proteins were secreted to the growth medium and were also located at the bacterial cell surface. The genes coding for both proteins were inactivated in this strain. Inactivation of LCABL_00230 (encoding p40) did not result in a significant difference in phenotype, whereas a mutation in LCABL_02770 (encoding p75) produced cells that formed very long chains. Purified glutathione-S-transferase (GST)-p40 and -p75 fusion proteins were able to hydrolyze the muropeptides from L. casei cell walls. Both fusions bound to mucin, collagen and to intestinal epithelial cells and, similar to L. rhamnosus GG p40, stimulated epidermal growth factor receptor phosphorylation in mouse intestine ex vivo. These results indicate that extracellular proteins belonging to the machinery of cell-wall metabolism in the closely related L. casei/paracasei-L. rhamnosus group are most likely involved in the probiotic effects described for these bacteria
Journal of Molecular Microbiology and Biotechnology | 2007
Vicente Monedero; Alain Mazé; Grégory Boël; Manuel Zúñiga; Sophie Beaufils; Axel Hartke; Josef Deutscher
Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P∼EIIB-dependent phosphorylation regulates induction of the corresponding genes and P∼His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-β-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response.