Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine C. Jao is active.

Publication


Featured researches published by Christine C. Jao.


The EMBO Journal | 2006

Mechanism of endophilin N-BAR domain-mediated membrane curvature.

Jennifer L. Gallop; Christine C. Jao; Helen M. Kent; P. Jonathan G. Butler; Philip R. Evans; Ralf Langen; Harvey T. McMahon

Endophilin‐A1 is a BAR domain‐containing protein enriched at synapses and is implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin via a C‐terminal SH3 domain. We examine the mechanism by which the BAR domain and an N‐terminal amphipathic helix, which folds upon membrane binding, work as a functional unit (the N‐BAR domain) to promote dimerisation and membrane curvature generation. By electron paramagnetic resonance spectroscopy, we show that this amphipathic helix is peripherally bound in the plane of the membrane, with the midpoint of insertion aligned with the phosphate level of headgroups. This places the helix in an optimal position to effect membrane curvature generation. We solved the crystal structure of rat endophilin‐A1 BAR domain and examined a distinctive insert protruding from the membrane interaction face. This insert is predicted to form an additional amphipathic helix and is important for curvature generation. Its presence defines an endophilin/nadrin subclass of BAR domains. We propose that N‐BAR domains function as low‐affinity dimers regulating binding partner recruitment to areas of high membrane curvature.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement

Christine C. Jao; Balachandra G. Hegde; Jeannie Chen; Ian S. Haworth; Ralf Langen

α-Synuclein is known to play a causative role in Parkinson disease. Although its physiological functions are not fully understood, α-synuclein has been shown to interact with synaptic vesicles and modulate neurotransmitter release. However, the structure of its physiologically relevant membrane-bound state remains unknown. Here we developed a site-directed spin labeling and EPR-based approach for determining the structure of α-synuclein bound to a lipid bilayer. Continuous-wave EPR was used to assign local secondary structure and to determine the membrane immersion depth of lipid-exposed residues, whereas pulsed EPR was used to map long-range distances. The structure of α-synuclein was built and refined by using simulated annealing molecular dynamics restrained by the immersion depths and distances. We found that α-synuclein forms an extended, curved α-helical structure that is over 90 aa in length. The monomeric helix has a superhelical twist similar to that of right-handed coiled-coils which, like α-synuclein, contain 11-aa repeats, but which are soluble, oligomeric proteins (rmsd = 0.82 Å). The α-synuclein helix extends parallel to the curved membrane in a manner that allows conserved Lys and Glu residues to interact with the zwitterionic headgroups, while uncharged residues penetrate into the acyl chain region. This structural arrangement is significantly different from that of α-synuclein in the presence of the commonly used membrane-mimetic detergent SDS, which induces the formation of two antiparallel helices. Our structural analysis emphasizes the importance of studying membrane protein structure in a bilayer environment.


Journal of Biological Chemistry | 2003

Structural Organization of α-Synuclein Fibrils Studied by Site-directed Spin Labeling

Ani Der-Sarkissian; Christine C. Jao; Jeannie Chen; Ralf Langen

Despite its importance in Parkinsons disease, a detailed understanding of the structure and mechanism of α-synuclein fibril formation remains elusive. In this study, we used site-directed spin labeling and electron paramagnetic resonance spectroscopy to study the structural features of monomeric and fibrillar α-synuclein. Our results indicate that monomeric α-synuclein, in solution, has a highly dynamic structure, in agreement with the notion that α-synuclein is a natively unfolded protein. In contrast, fibrillar aggregates of α-synuclein exhibit a distinct domain organization. Our data identify a highly ordered and specifically folded central core region of ∼70 amino acids, whereas the N terminus is structurally more heterogeneous and the C terminus (∼40 amino acids) is completely unfolded. Interestingly, the central core region of α-synuclein exhibits several features reminiscent of those observed in the core region of fibrillar Alzheimers amyloid β peptide, including an in-register parallel structure. Although the lengths of the respective core regions differ, fibrils from different amyloid proteins nevertheless appear to be able to take up highly similar, and possibly conserved, structures.


Journal of Biological Chemistry | 2010

Membrane Curvature Induction and Tubulation Are Common Features of Synucleins and Apolipoproteins

Jobin Varkey; Jose Mario Isas; Naoko Mizuno; Martin Borch Jensen; Vikram Kjøller Bhatia; Christine C. Jao; Jitka Petrlova; John C. Voss; Dimitrios Stamou; Alasdair C. Steven; Ralf Langen

Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, β-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.


Journal of the American Chemical Society | 2010

A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins.

Jampani Nageswara Rao; Christine C. Jao; Balachandra G. Hegde; Ralf Langen; Tobias S. Ulmer

Partially folded proteins, characterized as exhibiting secondary structure elements with loose or absent tertiary contacts, represent important intermediates in both physiological protein folding and pathological protein misfolding. To aid in the characterization of the structural state(s) of such proteins, a novel structure calculation scheme is presented that combines structural restraints derived from pulsed EPR and NMR spectroscopy. The methodology is established for the protein alpha-synuclein (alphaS), which exhibits characteristics of a partially folded protein when bound to a micelle of the detergent sodium lauroyl sarcosinate (SLAS). By combining 18 EPR-derived interelectron spin label distance distributions with NMR-based secondary structure definitions and bond vector restraints, interelectron distances were correlated and a set of theoretical ensemble basis populations was calculated. A minimal set of basis structures, representing the partially folded state of SLAS-bound alphaS, was subsequently derived by back-calculating correlated distance distributions. A surprising variety of well-defined protein-micelle interactions was thus revealed in which the micelle is engulfed by two differently arranged antiparallel alphaS helices. The methodology further provided the population ratios between dominant ensemble structural states, whereas limitation in obtainable structural resolution arose from spin label flexibility and residual uncertainties in secondary structure definitions. To advance the understanding of protein-micelle interactions, the present study concludes by showing that, in marked contrast to secondary structure stability, helix dynamics of SLAS-bound alphaS correlate with the degree of protein-induced departures from free micelle dimensions.


Journal of Biological Chemistry | 2011

Membrane Curvature Sensing by Amphipathic Helices A SINGLE LIPOSOME STUDY USING α-SYNUCLEIN AND ANNEXIN B12

Martin Borch Jensen; Vikram Kjøller Bhatia; Christine C. Jao; Jakob E. Rasmussen; Søren L. Pedersen; Knud J. Jensen; Ralf Langen; Dimitrios Stamou

Background: Amphipathic helices preferentially bind highly curved lipid membranes, providing a method of protein sorting. Results: Curvature sensing requires the insertion of hydrophobic residues and is modulated by electrostatic interactions. Conclusion: The relative strength of hydrophobic and electrostatic membrane interactions determines whether helix-containing proteins sense curvature. Significance: Sensing cannot be described through simple physicochemical properties but depends on the total sum of membrane interactions. Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues.


Journal of Biological Chemistry | 2010

Roles of Amphipathic Helices and the Bin/Amphiphysin/Rvs (BAR) Domain of Endophilin in Membrane Curvature Generation

Christine C. Jao; Balachandra G. Hegde; Jennifer L. Gallop; Prabhavati B. Hegde; Harvey T. McMahon; Ian S. Haworth; Ralf Langen

Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.


Biopolymers | 2012

Computer modeling of nitroxide spin labels on proteins

Ma’mon M. Hatmal; Yiyu Li; Balachandra G. Hegde; Prabhavati B. Hegde; Christine C. Jao; Ralf Langen; Ian S. Haworth

Electron paramagnetic resonance using site-directed spin labeling can be used as an approach for determination of protein structures that are difficult to solve by other methods. One important aspect of this approach is the measurement of interlabel distances using the double electron-electron resonance (DEER) method. Interpretation of experimental data could be facilitated by a computational approach to calculation of interlabel distances. We describe an algorithm, PRONOX, for rapid computation of interlabel distances based on calculation of spin label conformer distributions at any site of a protein. The program incorporates features of the label distribution established experimentally, including weighting of favorable conformers of the label. Distances calculated by PRONOX were compared with new DEER distances for amphiphysin and annexin B12 and with published data for FCHo2 (F-BAR), endophilin, and α-synuclein, a total of 44 interlabel distances. The program reproduced these distances accurately (r(2) = 0.94, slope = 0.98). For 9 of the 11 distances for amphiphysin, PRONOX reproduced the experimental data to within 2.5 Å. The speed and accuracy of PRONOX suggest that the algorithm can be used for fitting to DEER data for determination of protein tertiary structure.


Journal of Biological Chemistry | 2010

Multiple Modes of Endophilin-mediated Conversion of Lipid Vesicles into Coated Tubes IMPLICATIONS FOR SYNAPTIC ENDOCYTOSIS

Naoko Mizuno; Christine C. Jao; Ralf Langen; Alasdair C. Steven

Endophilin A1 is a BAR (Bin/amphiphysin/Rvs) protein abundant in neural synapses that senses and induces membrane curvature, contributing to neck formation in presynaptic endocytic vesicles. To investigate its role in membrane remodeling, we used cryoelectron microscopy to characterize structural changes induced in lipid vesicles by exposure to endophilin. The vesicles convert rapidly to coated tubules whose morphology reflects the local concentration of endophilin. Their diameters and curvature resemble those of synaptic vesicles in situ. Three-dimensional reconstructions of quasicylindrical tubes revealed arrays of BAR dimers, flanked by densities that we equate with amphipathic helices whose folding and membrane insertion were attested by EPR. We also observed the compression of bulbous coated tubes into 70-Å-wide cylindrical micelles, which appear to mimic the penultimate (hemi-fission) stage of endocytosis. Our findings suggest that the adaptability of endophilin-lipid interactions underlies dynamic changes of endocytic membranes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina

H. Moaven; Yukihiro Koike; Christine C. Jao; Vsevolod V. Gurevich; Ralf Langen; Jeannie Chen

Arrestins bind ligand-activated, phosphorylated G protein-coupled receptors (GPCRs) and terminate the activation of G proteins. Additionally, nonvisual arrestin/GPCR complex can initiate G protein-independent intracellular signals through their ability to act as scaffolds that bring other signaling molecules to the internalized GPCR. Like nonvisual arrestins, vertebrate visual arrestin (ARR1) terminates G protein signaling from light-activated, phosphorylated GPCR, rhodopsin. Unlike nonvisual arrestins, its role as a transducer of signaling from internalized rhodopsin has not been reported in the vertebrate retina. Formation of signaling complexes with arrestins often requires recruitment of the endocytic adaptor protein, AP-2. We have previously shown that Lys296 → Glu (K296E), which is a naturally occurring rhodopsin mutation in certain humans diagnosed with autosomal dominant retinitis pigmentosa, causes toxicity through forming a stable complex with ARR1. Here we investigated whether recruitment of AP-2 by the K296E/ARR1 complex plays a role in generating the cell death signal in a transgenic mouse model of retinal degeneration. We measured the binding affinity of ARR1 for AP-2 and found that, although the affinity is much lower than that of the other arrestins, the unusually high concentration of ARR1 in rods would favor this interaction. We further demonstrate that p44, a splice variant of ARR1 that binds light-activated, phosphorylated rhodopsin but lacks the AP-2 binding motif, prevents retinal degeneration and rescues visual function in K296E mice. These results reveal a unique role of ARR1 in a G protein-independent signaling cascade in the vertebrate retina.

Collaboration


Dive into the Christine C. Jao's collaboration.

Top Co-Authors

Avatar

Ralf Langen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Balachandra G. Hegde

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeannie Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ian S. Haworth

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jose Mario Isas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Prabhavati B. Hegde

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Harvey T. McMahon

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Gallop

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alasdair C. Steven

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge