Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeannie Chen is active.

Publication


Featured researches published by Jeannie Chen.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement

Christine C. Jao; Balachandra G. Hegde; Jeannie Chen; Ian S. Haworth; Ralf Langen

α-Synuclein is known to play a causative role in Parkinson disease. Although its physiological functions are not fully understood, α-synuclein has been shown to interact with synaptic vesicles and modulate neurotransmitter release. However, the structure of its physiologically relevant membrane-bound state remains unknown. Here we developed a site-directed spin labeling and EPR-based approach for determining the structure of α-synuclein bound to a lipid bilayer. Continuous-wave EPR was used to assign local secondary structure and to determine the membrane immersion depth of lipid-exposed residues, whereas pulsed EPR was used to map long-range distances. The structure of α-synuclein was built and refined by using simulated annealing molecular dynamics restrained by the immersion depths and distances. We found that α-synuclein forms an extended, curved α-helical structure that is over 90 aa in length. The monomeric helix has a superhelical twist similar to that of right-handed coiled-coils which, like α-synuclein, contain 11-aa repeats, but which are soluble, oligomeric proteins (rmsd = 0.82 Å). The α-synuclein helix extends parallel to the curved membrane in a manner that allows conserved Lys and Glu residues to interact with the zwitterionic headgroups, while uncharged residues penetrate into the acyl chain region. This structural arrangement is significantly different from that of α-synuclein in the presence of the commonly used membrane-mimetic detergent SDS, which induces the formation of two antiparallel helices. Our structural analysis emphasizes the importance of studying membrane protein structure in a bilayer environment.


Journal of Biological Chemistry | 2003

Structural Organization of α-Synuclein Fibrils Studied by Site-directed Spin Labeling

Ani Der-Sarkissian; Christine C. Jao; Jeannie Chen; Ralf Langen

Despite its importance in Parkinsons disease, a detailed understanding of the structure and mechanism of α-synuclein fibril formation remains elusive. In this study, we used site-directed spin labeling and electron paramagnetic resonance spectroscopy to study the structural features of monomeric and fibrillar α-synuclein. Our results indicate that monomeric α-synuclein, in solution, has a highly dynamic structure, in agreement with the notion that α-synuclein is a natively unfolded protein. In contrast, fibrillar aggregates of α-synuclein exhibit a distinct domain organization. Our data identify a highly ordered and specifically folded central core region of ∼70 amino acids, whereas the N terminus is structurally more heterogeneous and the C terminus (∼40 amino acids) is completely unfolded. Interestingly, the central core region of α-synuclein exhibits several features reminiscent of those observed in the core region of fibrillar Alzheimers amyloid β peptide, including an in-register parallel structure. Although the lengths of the respective core regions differ, fibrils from different amyloid proteins nevertheless appear to be able to take up highly similar, and possibly conserved, structures.


Neuron | 2000

Rapid and Reproducible Deactivation of Rhodopsin Requires Multiple Phosphorylation Sites

Ana Mendez; Marie E. Burns; Angela Roca; Janis Lem; Lan Wing Wu; Melvin I. Simon; Denis A. Baylor; Jeannie Chen

Efficient single-photon detection by retinal rod photoreceptors requires timely and reproducible deactivation of rhodopsin. Like other G protein-coupled receptors, rhodopsin contains multiple sites for phosphorylation at its COOH-terminal domain. Transgenic and electrophysiological methods were used to functionally dissect the role of the multiple phosphorylation sites during deactivation of rhodopsin in intact mouse rods. Mutant rhodopsins bearing zero, one (S338), or two (S334/S338) phosphorylation sites generated single-photon responses with greatly prolonged, exponentially distributed durations. Responses from rods expressing mutant rhodopsins bearing more than two phosphorylation sites declined along smooth, reproducible time courses; the rate of recovery increased with increasing numbers of phosphorylation sites. We conclude that multiple phosphorylation of rhodopsin is necessary for rapid and reproducible deactivation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors

Ana Mendez; Marie E. Burns; Izabela Sokal; Alexander M. Dizhoor; Wolfgang Baehr; Krzysztof Palczewski; Denis A. Baylor; Jeannie Chen

The retinas photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca2+ regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs−/− retinas showed no Ca2+ dependence, indicating that Ca2+ regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs−/− rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs−/− rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs−/− rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rods operating range.


Journal of Biological Chemistry | 2007

Investigation of α-Synuclein Fibril Structure by Site-directed Spin Labeling

Min Chen; Martin Margittai; Jeannie Chen; Ralf Langen

The misfolding and fibril formation of α-synuclein plays an important role in neurodegenerative diseases such as Parkinson disease. Here we used electron paramagnetic resonance spectroscopy, together with site-directed spin labeling, to investigate the structural features of α-synuclein fibrils. We generated fibrils from a total of 83 different spin-labeled derivatives and observed single-line, exchange-narrowed EPR spectra for the majority of all sites located within the core region of α-synuclein fibrils. Such exchange narrowing requires the orbital overlap between multiple spin labels in close contact. The core region of α-synuclein fibrils must therefore be arranged in a parallel, in-register structure wherein same residues from different molecules are stacked on top of each other. This parallel, in-register core region extends from residue 36 to residue 98 and is tightly packed. Only a few sites within the core region, such as residues 62–67 located at the beginning of the NAC region, as well as the N- and C-terminal regions outside the core region, are significantly less ordered. Together with the accessibility measurements that suggest the location of potential β-sheet regions within the fibril, the data provide significant structural constraints for generating three-dimensional models. Furthermore, the data support the emerging view that parallel, in-register structure is a common feature shared by a number of naturally occurring amyloid fibrils.


Neuron | 2005

Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions

K. Saidas Nair; Susan M. Hanson; Ana Mendez; Eugenia V. Gurevich; Matthew J. Kennedy; Valery I. Shestopalov; Sergey A. Vishnivetskiy; Jeannie Chen; James B. Hurley; Vsevolod V. Gurevich; Vladlen Z. Slepak

In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion.


Journal of Clinical Investigation | 2006

Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers

Volker Luibl; Jose Mario Isas; Rakez Kayed; Charles G. Glabe; Ralf Langen; Jeannie Chen

Protein misfolding and aggregation are thought to underlie the pathogenesis of many amyloid diseases, such as Alzheimer and Parkinson diseases, whereby a stepwise protein misfolding process begins with the conversion of soluble protein monomers to prefibrillar oligomers and progresses to the formation of insoluble amyloid fibrils. Drusen are extracellular deposits found in aging eyes and in eyes afflicted with age-related macular degeneration (AMD). Recent characterizations of drusen have revealed protein components that are shared with amyloid deposits. However, characteristic amyloid fibrils have thus far not been identified in drusen. In this study, we tested the hypothesis that nonfibrillar oligomers may be a common link in amyloid diseases. Oligomers consisting of distinct amyloidogenic proteins and peptides can be detected by a recently developed antibody that is thought to recognize a common structure. Notably, oligomers exhibit cellular toxicity, which suggests that they play a role in the pathogenesis of neurodegenerative diseases. Through use of the anti-oligomer antibody, we came to observe the presence of nonfibrillar, toxic oligomers in drusen. Conversely, no reactivity was observed in age-matched control eyes without drusen. These results suggest that amyloid oligomers may be involved in drusen biogenesis and that similar protein misfolding processes may occur in AMD and amyloid diseases.


Investigative Ophthalmology & Visual Science | 2010

Soluble and Mature Amyloid Fibrils in Drusen Deposits

J. Mario Isas; Volker Luibl; Lincoln V. Johnson; Rakez Kayed; Ronald Wetzel; Charles G. Glabe; Ralf Langen; Jeannie Chen

PURPOSE Drusen are a hallmark of eyes affected by age-related macular degeneration. In previous study, a conformational-specific antibody showed drusen to contain nonfibrillar amyloid structures. The current study was undertaken to assess the presence of additional amyloid structures in drusen. METHODS Sections from human donor eyes were reacted with M204, a monoclonal antibody that recognizes nonfibrillar oligomers; OC, a polyclonal antibody that recognizes amyloid fibrils of various molecular weights; and WO1 and WO2, monoclonal antibodies that are specifically reactive to mature amyloid fibrils. Electron microscopy was used as an independent means of investigating the presence of amyloid fibrils in drusen. RESULTS The presence of nonfibrillar oligomers was verified using the M204 antibody. OC and WO antibodies stained a wide spectrum of vesicular structures. OC reactivity showed extensive overlap with Abeta immunoreactivity, whereas a partial overlap was seen between Abeta reactivity and that of the WO antibodies. The presence of amyloid fibrils was also visualized by electron microscopy. CONCLUSIONS These data reveal the presence of a wide spectrum of amyloid structures in drusen. The results are significant, given that specific conformational forms of amyloid are known to be pathogenic in a variety of neurodegenerative diseases. Deposition of these structures may lead to local toxicity of the retinal pigmented epithelium or induction of local inflammatory events that contribute to drusen biogenesis and the pathogenesis of AMD.


Neuron | 2005

Recoverin Improves Rod-Mediated Vision by Enhancing Signal Transmission in the Mouse Retina

Alapakkam P. Sampath; Katherine J. Strissel; Rajesh V. Elias; Vadim Y. Arshavsky; James F. McGinnis; Jeannie Chen; Satoru Kawamura; Fred Rieke; James B. Hurley

Vision in dim light requires that photons absorbed by rod photoreceptors evoke signals that reliably propagate through the retina. We investigated how a perturbation in rod physiology affects propagation of those signals in the retina and ultimately visual sensitivity. Recoverin is a protein in rods that prolongs phototransduction and enhances visual sensitivity. It is not present in neurons postsynaptic to rods, yet we found that light-evoked responses of rod bipolar and ganglion cells were shortened when measured in recoverin-deficient retinas. Unexpectedly, the effect of recoverin on postsynaptic signals could not be explained by its effect on phototransduction. Instead, it is an effect of recoverin downstream of phototransduction in rods that prolongs signal transmission and enhances visual sensitivity. An important implication of our findings is that the recovery phase of the rod photoresponse does not contribute significantly to visual sensitivity near absolute threshold.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina

Linda Ruggiero; Mark P. Connor; Jeannie Chen; Ralf Langen; Silvia C. Finnemann

In the mammalian retina, life-long renewal of light-sensitive photoreceptor outer segments (POS) involves circadian shedding of distal rod POS tips and their subsequent phagocytosis by the adjacent retinal pigment epithelium (RPE) every morning after light onset. Molecular mechanisms that promote or synchronize POS tip shedding have thus far remained unknown. Here we examined plasma membrane asymmetry of living POS by quantifying surface exposure of the membrane phospholipid phosphatidylserine (PS) using antibodies, annexin V, and pSIVA (polarity-sensitive indicator of viability and apoptosis), an annexin-based biosensor with switchable states of fluorescence. We found that isolated POS particles possess externalized PS, whose blockade or removal reduces their binding and engulfment by RPE in culture. Imaging of live photoreceptors in freshly dissected mouse retina detected PS externalization restricted to POS tips with discrete boundaries. In wild-type mice, frequency of rod tips exposing PS and length of tips with exposed PS peak shortly after light onset. In contrast, PS-marked POS tips do not vary in mice lacking the diurnal phagocytic rhythm of the RPE due to loss of either the phagocytosis receptor αvβ5 integrin, expressed by the RPE but not by photoreceptors, or its extracellular ligand milk fat globule-EGF factor 8 (MFG-E8). These data identify a molecular distinction, localized PS exposure, that is specific to the surface of rod POS tips. Enhanced PS exposure preceding rod shedding and phagocytosis suggests that surface PS promotes these processes. Moreover, our results demonstrate that the diurnal rhythm of PS demarcation of POS tips is not intrinsic to rod photoreceptors but requires activities of the RPE as well.

Collaboration


Dive into the Jeannie Chen's collaboration.

Top Co-Authors

Avatar

Ralf Langen

University of California

View shared research outputs
Top Co-Authors

Avatar

Vladimir J. Kefalov

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tian Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Mendez

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frans Vinberg

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie E. Burns

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge