Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Espiritu is active.

Publication


Featured researches published by Christine Espiritu.


Antimicrobial Agents and Chemotherapy | 2012

Genotype and Subtype Profiling of PSI-7977 as a Nucleotide Inhibitor of Hepatitis C Virus

Angela M. Lam; Christine Espiritu; Shalini Bansal; Holly M. Micolochick Steuer; Congrong Niu; Veronique Zennou; Meg Keilman; Yuao Zhu; Shuiyun Lan; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-7977, a prodrug of 2′-F-2′-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC50) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.


Journal of Biological Chemistry | 2010

Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977

Eisuke Murakami; Tatiana Tolstykh; Haiying Bao; Congrong Niu; Holly M. Micolochick Steuer; Donghui Bao; Wonsuk Chang; Christine Espiritu; Shalini Bansal; Angela M. Lam; Michael Otto; Michael J. Sofia; Phillip A. Furman

A phosphoramidate prodrug of 2′-deoxy-2′-α-fluoro-β-C-methyluridine-5′-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5′-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.


Antimicrobial Agents and Chemotherapy | 2010

PSI-7851, a Pronucleotide of β-d-2′-Deoxy-2′-Fluoro-2′-C-Methyluridine Monophosphate, Is a Potent and Pan-Genotype Inhibitor of Hepatitis C Virus Replication

Angela M. Lam; Eisuke Murakami; Christine Espiritu; Holly M. Micolochick Steuer; Congrong Niu; Meg Keilman; Haiying Bao; Veronique Zennou; Nigel Bourne; Justin G. Julander; John D. Morrey; Donald F. Smee; David N. Frick; Julie A. Heck; Peiyuan Wang; Dhanapalan Nagarathnam; Bruce S. Ross; Michael J. Sofia; Michael Otto; Phillip A. Furman

ABSTRACT The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine-5′-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075 ± 0.050 μM (mean ± standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 μM). Cross-resistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV replicon RNA and prevent viral rebound.


Journal of Virology | 2011

Hepatitis C Virus Nucleotide Inhibitors PSI-352938 and PSI-353661 Exhibit a Novel Mechanism of Resistance Requiring Multiple Mutations within Replicon RNA

Angela M. Lam; Christine Espiritu; Shalini Bansal; Holly M. Micolochick Steuer; Veronique Zennou; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate. Both compounds are metabolized to the same active 5′-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2′-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2′-F-2′-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2′-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.


Antimicrobial Agents and Chemotherapy | 2011

Inhibition of Hepatitis C Virus Replicon RNA Synthesis by PSI-352938, a Cyclic Phosphate Prodrug of β-d-2′-Deoxy-2′-α-Fluoro-2′-β-C-Methylguanosine

Angela M. Lam; Christine Espiritu; Eisuke Murakami; Veronique Zennou; Shalini Bansal; Holly M. Micolochick Steuer; Congrong Niu; Meg Keilman; Haiying Bao; Nigel Bourne; Ronald L. Veselenak; P. Ganapati Reddy; Wonsuk Chang; Jinfa Du; Dhanapalan Nagarathnam; Michael J. Sofia; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine 5′-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 μM, respectively. The active 5′-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virus in vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of novel HCV inhibitors: Synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B

Xiaoyan Zhang; Nanjing Zhang; Guangming Chen; Anthony Turpoff; Hongyu Ren; James J. Takasugi; Christie Morrill; Jin Zhu; Chunshi Li; William Joseph Lennox; Steven D. Paget; Yalei Liu; Neil Gregory Almstead; F. George Njoroge; Zhengxian Gu; Takashi Komatsu; Valerie Clausen; Christine Espiritu; Jason D. Graci; Joseph M. Colacino; Fred Lahser; Nicole Risher; Marla Weetall; Amin Nomeir; Gary Mitchell Karp

A novel series of 6-(indol-2-yl)pyridine-3-sulfonamides was prepared and evaluated for their ability to inhibit HCV RNA replication in the HCV replicon cell culture assay. Preliminary optimization of this series furnished compounds with low nanomolar potency against the HCV genotype 1b replicon. Among these, compound 8c has identified as a potent HCV replicon inhibitor (EC50=4 nM) with a selectivity index with respect to cellular GAPDH of more than 2500. Further, compound 8c had a good pharmacokinetic profile in rats with an IV half-life of 6h and oral bioavailability (F) of 62%. Selection of HCV replicon resistance identified an amino acid substitution in HCV NS4B that confers resistance to these compounds. These compounds hold promise as a new chemotype with anti-HCV activity mediated through an underexploited viral target.


Nucleosides, Nucleotides & Nucleic Acids | 2012

A 2′-Deoxy-2′-Fluoro-2′-C-Methyl Uridine Cyclopentyl Carbocyclic Analog and Its Phosphoramidate Prodrug as Inhibitors of HCV NS5B Polymerase

Jian Liu; Jinfa Du; Peiyuan Wang; Dhanapalan Nagarathnam; Christine Espiritu; Haiying Bao; Eisuke Murakami; Phillip A. Furman; Michael J. Sofia

The 2 ′-deoxy-2 ′-fluoro-2 ′-C-methyluridine nucleotide prodrug, PSI-7851 and its single diastereomer PSI-7977 have displayed potent antiviral activity against hepatitis C virus in clinical trials, and PSI-7977 is currently in Phase III studies. As part of our SAR study of the 2 ′-deoxy-2 ′-fluoro-2 ′- C-methyl class of nucleosides, we prepared the cyclopentyl carbocyclic uridine analog 11 and its phosphoramidate prodrug 15. Both 11 and 15 were shown not to inhibit HCV replication. This lack of activity might be attributed to the inability of the monophosphate to be converted to the corresponding diphosphate or triphosphate or the inactivity of triphosphate of 11 as an inhibitor of the polymerase.


Nucleosides, Nucleotides & Nucleic Acids | 2011

Synthesis of Stable Isotope Labeled Analogs of the Anti-Hepatitis C Virus Nucleotide Prodrugs PSI-7977 and PSI-352938

Byoung-Kwon Chun; Jinfa Du; Hai-Ren Zhang; Wonsuk Chang; Bruce S. Ross; Ying Jiang; Donghui Bao; Christine Espiritu; Meg Keilman; Holly M. Micolochick Steuer; Phillip A. Furman; Michael J. Sofia

In order to support bioanalytical LC/MS method development and plasma sample analysis in preclinical and clinical studies of the anti-hepatitis C-virus nucleotides, PSI-7977 and PSI-352938, the corresponding stable isotope labeled forms were prepared. These labeled compounds were prepared by addition reaction of the freshly prepared Grignard reagent 13CD3MgI to the corresponding 2 ′-ketone nucleosides followed by fluorination of the resulting carbinol with DAST. As expected, these 2 ′-C-(trideuterated-13C-methyl) nucleotide prodrugs showed similar anti-HCV activity to that of the corresponding unlabeled ones.


Journal of Medicinal Chemistry | 2010

Discovery of a β-d-2′-Deoxy-2′-α-fluoro-2′-β-C-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus

Michael J. Sofia; Donghui Bao; Wonsuk Chang; Jinfa Du; Dhanapalan Nagarathnam; Suguna Rachakonda; P. Ganapati Reddy; Bruce S. Ross; Peiyuan Wang; Hai-Ren Zhang; Shalini Bansal; Christine Espiritu; Meg Keilman; Angela M. Lam; Holly M. Micolochick Steuer; Congrong Niu; Michael Otto; Phillip A. Furman


Bioorganic & Medicinal Chemistry Letters | 2010

2'-deoxy-2'-α-fluoro-2'-β-C-methyl 3',5'-cyclic phosphate nucleotide prodrug analogs as inhibitors of HCV NS5B polymerase: discovery of PSI-352938.

P. Ganapati Reddy; Donghui Bao; Wonsuk Chang; Byoung-Kwon Chun; Jinfa Du; Dhanapalan Nagarathnam; Suguna Rachakonda; Bruce S. Ross; Hai-Ren Zhang; Shalini Bansal; Christine Espiritu; Meg Keilman; Angela M. Lam; Congrong Niu; Holly M. Micolochick Steuer; Phillip A. Furman; Michael J. Otto; Michael J. Sofia

Collaboration


Dive into the Christine Espiritu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinfa Du

Princeton University

View shared research outputs
Researchain Logo
Decentralizing Knowledge