Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shalini Bansal is active.

Publication


Featured researches published by Shalini Bansal.


Antimicrobial Agents and Chemotherapy | 2012

Genotype and Subtype Profiling of PSI-7977 as a Nucleotide Inhibitor of Hepatitis C Virus

Angela M. Lam; Christine Espiritu; Shalini Bansal; Holly M. Micolochick Steuer; Congrong Niu; Veronique Zennou; Meg Keilman; Yuao Zhu; Shuiyun Lan; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-7977, a prodrug of 2′-F-2′-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC50) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.


Journal of Biological Chemistry | 2010

Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977

Eisuke Murakami; Tatiana Tolstykh; Haiying Bao; Congrong Niu; Holly M. Micolochick Steuer; Donghui Bao; Wonsuk Chang; Christine Espiritu; Shalini Bansal; Angela M. Lam; Michael Otto; Michael J. Sofia; Phillip A. Furman

A phosphoramidate prodrug of 2′-deoxy-2′-α-fluoro-β-C-methyluridine-5′-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5′-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.


Journal of Virology | 2011

Hepatitis C Virus Nucleotide Inhibitors PSI-352938 and PSI-353661 Exhibit a Novel Mechanism of Resistance Requiring Multiple Mutations within Replicon RNA

Angela M. Lam; Christine Espiritu; Shalini Bansal; Holly M. Micolochick Steuer; Veronique Zennou; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate. Both compounds are metabolized to the same active 5′-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2′-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2′-F-2′-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2′-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.


Antimicrobial Agents and Chemotherapy | 2011

Inhibition of Hepatitis C Virus Replicon RNA Synthesis by PSI-352938, a Cyclic Phosphate Prodrug of β-d-2′-Deoxy-2′-α-Fluoro-2′-β-C-Methylguanosine

Angela M. Lam; Christine Espiritu; Eisuke Murakami; Veronique Zennou; Shalini Bansal; Holly M. Micolochick Steuer; Congrong Niu; Meg Keilman; Haiying Bao; Nigel Bourne; Ronald L. Veselenak; P. Ganapati Reddy; Wonsuk Chang; Jinfa Du; Dhanapalan Nagarathnam; Michael J. Sofia; Michael J. Otto; Phillip A. Furman

ABSTRACT PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine 5′-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 μM, respectively. The active 5′-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virus in vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals.


Journal of Medicinal Chemistry | 2014

Discovery of a Novel Class of Potent HCV NS4B Inhibitors: SAR Studies on Piperazinone Derivatives

Ramesh Kakarla; Jian Liu; Devan Naduthambi; Wonsuk Chang; Ralph T. Mosley; Donghui Bao; Holly M. Micolochick Steuer; Meg Keilman; Shalini Bansal; Angela M. Lam; William Seibel; Sandra Neilson; Phillip A. Furman; Michael J. Sofia

HTS screening identified compound 2a (piperazinone derivative) as a low micromolar HCV genotype 1 (GT-1) inhibitor. Resistance mapping studies suggested that this piperazinone chemotype targets the HCV nonstructural protein NS4B. Extensive SAR studies were performed around 2a and the amide function and the C-3/C-6 cis stereochemistry of the piperazinone core were essential for HCV activity. A 10-fold increase in GT-1 potency was observed when the chiral phenylcyclopropyl amide side chain of 2a was replaced with p-fluorophenylisoxazole-carbonyl moiety (67). Replacing the C-6 nonpolar hydrophobic moiety of 67 with a phenyl moiety (95) did not diminish the GT-1 potency. A heterocyclic thiophene moiety (103) and an isoxazole moiety (108) were incorporated as isosteric replacements for the C-6 phenyl moiety (95), resulting in significant improvement in GT-1b and 1a potency. However, the piperazonone class of compounds lacks GT-2 activity and, consequently, were not pursued further into development.


Bioorganic & Medicinal Chemistry Letters | 2012

Inhibition of hepatitis C virus NS5A by fluoro-olefin based γ-turn mimetics

Wonsuk Chang; Ralph T. Mosley; Shalini Bansal; Meg Keilman; Angela M. Lam; Phillip A. Furman; Michael J. Otto; Michael J. Sofia

The HCV non-structural protein NS5A has been established as a viable target for the development of direct acting antiviral therapy. From computational modeling studies strong intra-molecular hydrogen bonds were found to be a common structural moiety within known NS5A inhibitors that have low pico-molar replicon potency. Efforts to reproduce these γ-turn-like substructures provided a novel NS5A inhibitor based on a fluoro-olefin isostere. This fluoro-olefin containing inhibitor exhibited picomolar activity (EC(50)=79 pM) against HCV genotype 1b replicon without measurable cytotoxicity. This level of activity is comparable to the natural peptide-based inhibitors currently under clinic evaluation, and demonstrates that a peptidomimetic approach can serve as a useful strategy to produce potent and structurally unique inhibitors of HCV NS5A.


Journal of Medicinal Chemistry | 2009

Novel pyrrolidine ureas as C-C chemokine receptor 1 (CCR1) antagonists.

J. Robert Merritt; Jinqi Liu; Elizabeth Quadros; Michelle Lee Morris; Ruiyan Liu; Rui Zhang; Biji Jacob; Jennifer Postelnek; Catherine M. Hicks; Weiqing Chen; Earl F. Kimble; W. Lynn Rogers; Linda O’Brien; Nicole White; Hema Desai; Shalini Bansal; George King; Michael J. Ohlmeyer; Kenneth C. Appell; Maria L. Webb

Monocyte infiltration is implicated in a variety of diseases including multiple myeloma, rheumatoid arthritis, and multiple sclerosis. C-C chemokine receptor 1 (CCR1) is a chemokine receptor that upon stimulation, particularly by macrophage inflammatory protein 1alpha (MIP-1alpha) and regulated on normal T-cell expressed and secreted (RANTES), mediates monocyte trafficking to sites of inflammation. High throughput screening of our combinatorial collection identified a novel, moderately potent CCR1 antagonist 3. The library hit 3 was optimized to the advanced lead compound 4. Compound 4 inhibited CCR1 mediated chemotaxis of monocytes with an IC(50) of 20 nM. In addition, the compound was highly selective over other chemokine receptors. It had good microsomal stability when incubated with rat and human liver microsomes and showed no significant cytochrome P450 (CYP) inhibition. Pharmacokinetic evaluation of the compound in the rat showed good oral bioavailability.


Antimicrobial Agents and Chemotherapy | 2012

Metabolic activation of the anti-hepatitis C virus nucleotide prodrug PSI-352938.

Congrong Niu; Tatiana Tolstykh; Haiying Bao; Yeojin Park; Darius Babusis; Angela M. Lam; Shalini Bansal; Jinfa Du; Wonsuk Chang; P. Ganapati Reddy; Hai-Ren Zhang; Joseph Woolley; Li-Quan Wang; Piyun B. Chao; Adrian S. Ray; Michael J. Otto; Michael J. Sofia; Phillip A. Furman; Eisuke Murakami

ABSTRACT PSI-352938 is a novel cyclic phosphate prodrug of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3′,5′-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O6-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5′-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.


Antimicrobial Agents and Chemotherapy | 2014

Molecular and Structural Basis for the Roles of Hepatitis C Virus Polymerase NS5B Amino Acids 15, 223, and 321 in Viral Replication and Drug Resistance

Angela M. Lam; Thomas E. Edwards; Ralph T. Mosley; Eisuke Murakami; Shalini Bansal; Christopher Lugo; Haiying Bao; Michael J. Otto; Michael J. Sofia; Phillip A. Furman

ABSTRACT Resistance to the 2′-F-2′-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2′-F-2′-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and initial evaluation of novel, non-peptidic antagonists of the αv-integrins αvβ3 and αvβ5

Jeffrey J. Letourneau; Jinqi Liu; Michael Ohlmeyer; Chris Riviello; Yajing Rong; Hong Li; Kenneth C. Appell; Shalini Bansal; Biji Jacob; Angela Wong; Maria L. Webb

The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the alpha(v)-integrins alpha(v)beta(3) and alpha(v)beta(5) is described. High-throughput screening of an extensive series of ECLiPStrade mark compound libraries led to the identification of compound 1 as a dual inhibitor of the alpha(v)-integrins alpha(v)beta(3) and alpha(v)beta(5). Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the alpha(v)beta(3) and alpha(v)beta(5) integrins. Compounds 15a and 15b were shown to have promising activity in functional cellular assays and compound 15a also exhibited a promising Caco-2 permeability profile.

Collaboration


Dive into the Shalini Bansal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge