Christine Hervé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Hervé.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Benoit Lefebvre; Ton Timmers; Malick Mbengue; Sandra Moreau; Christine Hervé; Katalin Tóth; Joana Bittencourt-Silvestre; Dörte Klaus; Laurent Deslandes; Laurence Godiard; Jeremy D. Murray; Michael K. Udvardi; Sylvain Raffaele; Sébastien Mongrand; Julie V. Cullimore; Pascal Gamas; Andreas Niebel; Thomas Ott
Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.
Journal of Molecular Evolution | 2007
Olivier Navaud; Patrick Dabos; Elodie Carnus; Dominique Tremousaygue; Christine Hervé
TCP proteins are plant-specific transcription factors identified so far only in angiosperms and shown to be involved in specifying plant morphologies. However, the functions of these proteins remain largely unknown. Our study is the first phylogenetic analysis comparing the TCP genes from higher and lower plants, and it dates the emergence of the TCP family to before the split of the Zygnemophyta. EST database analysis and CODEHOP PCR amplification revealed TCP genes in basal land plant genomes and also in their close freshwater algal relatives. Based on an extensive survey of TCP genes, families of TCP proteins were characterized in the Arabidopsis thaliana, poplar, rice, club-moss, and moss genomes. The phylogenetic trees indicate a continuous expansion of the TCP family during the diversification of the Phragmoplastophyta and a similar degree of expansion in several angiosperm lineages. TCP paralogues were identified in all genomes studied, and Ks values indicate that TCP genes expanded during genome duplication events. MEME and SIMPLE analyses detected conserved motifs and low-complexity regions, respectively, outside of the TCP domain, which reinforced the previous description of a “mosaic” structure of TCP proteins.
Plant Physiology | 2009
Christine Hervé; Patrick Dabos; Claude Bardet; Alain Jauneau; Marie Christine Auriac; Agnès Ramboer; Fabrice Lacout; Dominique Tremousaygue
AtTCP20 is a transcription factor belonging to the Arabidopsis (Arabidopsis thaliana) TCP-P subfamily, characterized by its capacity to bind to site II motifs (TGGGCY). Our aim was to understand the role of AtTCP20 in plant development. The expression pattern of a translational fusion of PromTCP20:CDS20∷GUS∷GFP suggested a function for AtTCP20 in several plant organs and stages of development. The role of AtTCP20 was challenged in planta by inducing expression of AtTCP20 proteins fused with either a transcriptional activator domain (VP16) or a repressor domain (EAR). Expression of both modified proteins led to severe developmental phenotypes. In-depth analysis suggested that AtTCP20 may participate in the regulation of cell expansion, cell division, and cell differentiation. Gene expression profiling in roots and hypocotyls revealed that 252 genes were down-regulated in both organs after induction of the AtTCP20∷EAR repressor gene. Site II motifs (TGGGCY) were underrepresented in their promoters. Conversely, GG(A/T)CCC sequences related to binding sites identified for TCP proteins in rice (Oryza sativa) were overrepresented, and a TCP20 fusion protein was shown to bind to these sequences in vitro. Gene ontology indicated that many targeted genes were involved in cell wall biogenesis and modification during expansion and also encoded numerous transcription factors controlling plant development. Our results are consistent with the previous proposal that AtTCP20 is involved in cell division and growth coordination. Moreover, they further suggest that AtTCP20 also contributes to cell expansion control and indicate a different involvement of this protein in plant morphogenesis depending on the organ and the developmental stage.
Critical Reviews in Plant Sciences | 2002
Annick Barre; Christine Hervé; Bernard Lescure; Pierre Rougé
Referee: Dr. Philip Becraft, Zoology and Genetics/Agronomy Depts., 2116 Molecular Building, lowa State University, Ames, IA 50011 Forty-two lectin receptor kinase (lecRK)-related sequences and nine related soluble legume lectin sequences were identified in the Arabidopsis thaliana genome. The genes are scattered as a single or gathered copies at different loci throughout the five chromosomes, and four predicted lecRK probably correspond to pseudogenes. Both structural alignments and molecular modeling revealed striking similarities between the lectinlike domain of lecRK, and related A. thaliana soluble lectins and legume lectins. The hydrophobic cavity is extremely conserved, whereas most of the residues forming the monosaccharide-binding site and the bivalent cation-binding site of legume lectins are poorly conserved. LecRK should be unable to bind the simple sugars usually recognized by genuine legume lectins. Molecular modeling of the kinase domain suggests that, except for two apparently inactive receptors, all other lecRK contain a putative functional Ser/Thr kinase catalytic domain. Both the juxtamembrane and C-terminal domains, which are considered important regions for regulating the kinase activity, exhibit a few specific stretches of amino acid residues. Some phylogenetic relationships are inferred from the phylogenetic trees built up from the different lecRK domain sequences. LecRK cluster in three distinct classes (A,B,C), one of them (B) being more closely related to soluble lectins of A. thaliana and legume lectins.
Plant Molecular Biology | 1999
Christine Hervé; Jérome Serres; Patrick Dabos; Hervé Canut; Annick Barre; Pierre Rougé; Bernard Lescure
An Arabidopsis cDNA clone that defines a new class of plant serine/threonine receptor kinases was found to be a member of a family of four clustered genes (lecRK-a1–a4) which have been cloned, sequenced and mapped on chromosome 3. This family belongs to a large superfamily encoding putative receptors with an extracellular domain homologous to legume lectins and appears to be conserved at least among dicots. In the Columbia ecotype only the lecRK-a1 and perhaps the lecRK-a3 gene is functional, since lecRK-a2 is disrupted by a Ty-copia retroelement and lecRK-a4 contains a frameshift mutation. Structural analysis of the lecRK-a1 and lecRK-a3 deduced amino-acid sequences suggests that the lectin domain is unlikely to be involved in binding monosaccharides but could interact with complex glycans and/or with hydrophobic ligands. Immunodetection of lecRK gene products in plasma membranes purified by free-flow electrophoresis showed that the lecRK-a proteins are probably highly glycosylated integral plasma membrane components.
Plant Physiology | 2003
Maria-Téresa Navarro-Gochicoa; Sylvie Camut; Antonius C.J. Timmers; Andreas Niebel; Christine Hervé; Emmanuel Boutet; Jean-Jacques Bono; Anne Imberty; Julie V. Cullimore
To study the role of LecRK (lectin-like receptor kinase) genes in the legumerhizobia symbiosis, we have characterized the four Medicago truncatula Gaernt. LecRK genes that are most highly expressed in roots. Three of these genes, MtLecRK7;1, MtLecRK7;2, and MtLecRK7;3, encode proteins most closely related to the Class A LecRKs of Arabidopsis, whereas the protein encoded by the fourth gene, MtLecRK1;1, is most similar to a Class B Arabidopsis LecRK. All four genes show a strongly enhanced root expression, and detailed studies on MtLecRK1;1 and MtLecRK7;2 revealed that the levels of their mRNAs are increased by nitrogen starvation and transiently repressed after either rhizobial inoculation or addition of lipochitooligosaccharidic Nod factors. Studies of the MtLecRK1;1 and MtLecRK7;2 proteins, using green fluorescent protein fusions in transgenic M. truncatula roots, revealed that they are located in the plasma membrane and that their central transmembrane-spanning helix is required for correct sorting. Moreover, their lectin-like domains appear to be highly glycosylated. Of the four proteins, only MtLecRK1;1 shows a high conservation of key residues implicated in monosaccharide binding, and molecular modeling revealed that this protein may be capable of interacting with Nod factors. However, no increase in Nod factor binding was found in roots overexpressing a fusion in which the kinase domain of this protein had been replaced with green fluorescent protein. Roots expressing this fusion protein however showed an increase in nodule number, suggesting that expression of MtLecRK1;1 influences nodulation. The potential role of LecRKs in the legume-rhizobia symbiosis is discussed.
Journal of Biological Chemistry | 2012
Benoit Lefebvre; Doerte Klaus-Heisen; Anna Pietraszewska-Bogiel; Christine Hervé; Sylvie Camut; Marie-Christine Auriac; Virginie Gasciolli; Alessandra Nurisso; Theodorus W. J. Gadella; Julie V. Cullimore
Background: Nod factor perception (NFP) protein is a plant, lysin motif receptor-like kinase. Results: Disulfide bridges that connect the three extracellular lysin motifs and the intracellular dead-kinase domain are essential for NFP function. Conclusion: Post-translational modifications are required for NFP folding, trafficking, and functioning. Significance: Structural information will help to determine NFP biochemical function. The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.
New Phytologist | 2015
Céline Camps; Marie-Françoise Jardinaud; David Rengel; Sébastien Carrère; Christine Hervé; Frédéric Debellé; Pascal Gamas; Clare Gough
Myc-LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo-chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc-LCOs we aimed to analyse Myc-LCO-induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA-seq) was performed on roots of Medicago truncatula wild-type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc-LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc-LCO-regulation of transcriptomic reprogramming were highlighted: DMI3- and NSP1-dependent; DMI3-dependent and NSP1-independent; and DMI3- and NSP1-independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1-dependent and -independent pathways downstream of DMI3. Our data also indicate significant Myc-LCO-activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP.
Plant Physiology | 2016
Tatiana Vernié; Sylvie Camut; Céline Camps; Céline Remblière; Fernanda de Carvalho-Niebel; Malick Mbengue; Ton Timmers; Virginie Gasciolli; Richard Thompson; Christine Lesignor; Benoit Lefebvre; Julie V. Cullimore; Christine Hervé
The E3 ubiquitin ligase PUB1 is a common negative regulator for both rhizobial and arbuscular mycorrhizal symbioses and interacts with a key receptor kinase. PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula. In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.
Neuroscience Letters | 1998
Christine Hervé; Claude Colard; S Grillon; D. Fellmann; Bernadette Griffond
Two prominent neuron populations of the rat lateral hypothalamus express genes encoding respectively the prepromelanin-concentrating hormone (MCH) or dynorphin (DYN) and secretogranin II (SGII). Their roles remain hypothetical in mammals. In the present study, we examined the changes in MCH, DYN and SGII gene expression in dehydrated rats compared to controls. Dehydration was obtained by subcutaneous injection of polyethylene glycol (PEG) resulting in a large reduction of the extracellular fluid volume. Using competitive semi-quantitative RT-PCR and in situ hybridization methods, PEG-injected animals showed a significant increase of MCH mRNA level but no variation of DYN and SGII mRNA levels. These results confirm previous observations suggesting that intra- and extracellular dehydration challenges affect different regulation circuits; they indicate that both neuron populations could be involved in the maintenance of body fluid homeostasis, directly, or indirectly, as integrators of various information leading to goal-oriented behaviour.