Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit Lefebvre is active.

Publication


Featured researches published by Benoit Lefebvre.


Plant Physiology | 2007

Characterization of Lipid Rafts from Medicago truncatula Root Plasma Membranes: A Proteomic Study Reveals the Presence of a Raft-Associated Redox System

Benoit Lefebvre; Fabienne Furt; Marie-Andrée Hartmann; Louise V. Michaelson; Jean-Pierre Carde; Françoise Sargueil-Boiron; Michel Rossignol; Johnathan A. Napier; Julie V. Cullimore; Jean-Jacques Bessoule; Sébastien Mongrand

Several studies have provided new insights into the role of sphingolipid/sterol-rich domains so-called lipid rafts of the plasma membrane (PM) from mammalian cells, and more recently from leaves, cell cultures, and seedlings of higher plants. Here we show that lipid raft domains, defined as Triton X-100-insoluble membranes, can also be prepared from Medicago truncatula root PMs. These domains have been extensively characterized by ultrastructural studies as well as by analysis of their content in lipids and proteins. M. truncatula lipid domains are shown to be enriched in sphingolipids and Δ7-sterols, with spinasterol as the major compound, but also in steryl glycosides and acyl-steryl glycosides. A large number of proteins (i.e. 270) have been identified. Among them, receptor kinases and proteins related to signaling, cellular trafficking, and cell wall functioning were well represented whereas those involved in transport and metabolism were poorly represented. Evidence is also given for the presence of a complete PM redox system in the lipid rafts.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A remorin protein interacts with symbiotic receptors and regulates bacterial infection

Benoit Lefebvre; Ton Timmers; Malick Mbengue; Sandra Moreau; Christine Hervé; Katalin Tóth; Joana Bittencourt-Silvestre; Dörte Klaus; Laurent Deslandes; Laurence Godiard; Jeremy D. Murray; Michael K. Udvardi; Sylvain Raffaele; Sébastien Mongrand; Julie V. Cullimore; Pascal Gamas; Andreas Niebel; Thomas Ott

Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.


PLOS ONE | 2013

Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses

Anna Pietraszewska-Bogiel; Benoit Lefebvre; Maria A. Koini; Dörte Klaus-Heisen; Frank L. W. Takken; René Geurts; Julie V. Cullimore; Theodorus W. J. Gadella

Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M. truncatula (nodulation) and in N. benthamiana (cell death induction) indicates the relevance of the latter system for studies on these, and potentially other symbiotic LysM receptor-like kinases.


Journal of Biological Chemistry | 2011

Structure-Function Similarities between a Plant Receptor-like Kinase and the Human Interleukin-1 Receptor-associated Kinase-4

Doerte Klaus-Heisen; Alessandra Nurisso; Anna Pietraszewska-Bogiel; Malick Mbengue; Sylvie Camut; Ton Timmers; Carole Pichereaux; Michel Rossignol; Theodorus W. J. Gadella; Anne Imberty; Benoit Lefebvre; Julie V. Cullimore

Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.


ACS Chemical Biology | 2013

Lipo-chitooligosaccharidic Symbiotic Signals Are Recognized by LysM Receptor-Like Kinase LYR3 in the Legume Medicago truncatula

Judith Fliegmann; Sophie Canova; Christophe Lachaud; Sandra Uhlenbroich; Virginie Gasciolli; Carole Pichereaux; Michel Rossignol; Charles Rosenberg; Marie Cumener; Delphine Pitorre; Benoit Lefebvre; Clare Gough; Eric Samain; Sébastien Fort; Hugues Driguez; Boris Vauzeilles; Jean-Marie Beau; Alessandra Nurisso; Anne Imberty; Julie V. Cullimore; Jean-Jacques Bono

While chitooligosaccharides (COs) derived from fungal chitin are potent elicitors of defense reactions, structurally related signals produced by certain bacteria and fungi, called lipo-chitooligosaccharides (LCOs), play important roles in the establishment of symbioses with plants. Understanding how plants distinguish between friend and foe through the perception of these signals is a major challenge. We report the synthesis of a range of COs and LCOs, including photoactivatable probes, to characterize a membrane protein from the legume Medicago truncatula. By coupling photoaffinity labeling experiments with proteomics and transcriptomics, we identified the likely LCO-binding protein as LYR3, a lysin motif receptor-like kinase (LysM-RLK). LYR3, expressed heterologously, exhibits high-affinity binding to LCOs but not COs. Homology modeling, based on the Arabidopsis CO-binding LysM-RLK AtCERK1, suggests that LYR3 could accommodate the LCO in a conserved binding site. The identification of LYR3 opens up ways for the molecular characterization of LCO/CO discrimination.


New Phytologist | 2016

The LysM receptor‐like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato

Luis Buendia; Tongming Wang; Ariane Girardin; Benoit Lefebvre

Most plants have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi, which allows better plant nutrition. A plant signaling pathway, called the common symbiosis signaling pathway (CSSP), is essential for the establishment of both AM and root nodule symbioses. The CSSP is activated by microbial signals. Plant receptor(s) for AM fungal signals required for the activation of the CSSP and initial fungal penetration are currently unknown. We set up conditions to use virus-induced gene silencing (VIGS) in Solanum lycopersicum to study the genes potentially involved in AM. We show that the lysin motif receptor-like kinase SlLYK10, whose orthologs in legumes are essential for nodulation, but not for AM, and SlCCaMK, a component of the CSSP, are required for penetration of the AM fungus Rhizophagus irregularis into the roots of young tomato plants. Our results support the hypothesis that the SILYK10 ancestral gene originally played a role in AM and underwent duplication and neofunctionalization for a role in nodulation in legumes. Moreover, we conclude that VIGS is an efficient method for fast screening of genes playing major roles in AM.


Journal of Biological Chemistry | 2012

Role of N-Glycosylation sites and CXC motifs in trafficking of Medicago truncatula Nod factor perception protein to plasma membrane

Benoit Lefebvre; Doerte Klaus-Heisen; Anna Pietraszewska-Bogiel; Christine Hervé; Sylvie Camut; Marie-Christine Auriac; Virginie Gasciolli; Alessandra Nurisso; Theodorus W. J. Gadella; Julie V. Cullimore

Background: Nod factor perception (NFP) protein is a plant, lysin motif receptor-like kinase. Results: Disulfide bridges that connect the three extracellular lysin motifs and the intracellular dead-kinase domain are essential for NFP function. Conclusion: Post-translational modifications are required for NFP folding, trafficking, and functioning. Significance: Structural information will help to determine NFP biochemical function. The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.


Plant Physiology and Biochemistry | 2011

Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants

Judith Fliegmann; Sandra Uhlenbroich; Tomonori Shinya; Yves Martinez; Benoit Lefebvre; Naoto Shibuya; Jean Jacques Bono

The chitin elicitor-binding protein (CEBiP) from rice was the first plant lysin motif (LysM) protein for which the biological and biochemical function had been established. It belongs to a plant-specific family of extracellular LysM proteins (LYMs) for which we analyzed the phylogeny. LYMs are present in vascular plants only, where an early gene duplication event might have resulted in two types which were retained in present day genomes. LYMs consist of a signal peptide, three consecutive LysMs, separated by cysteine pairs, and a C-terminal region without any known signature, whose length allows the distinction between the two types, and which may be followed by a glycosylphosphatidylinositol (GPI) anchor motif. We analyzed a representative of each type, MtLYM1 and MtLYM2, from Medicago truncatula at the biochemical level and with respect to their expression patterns and observed some similarities but also marked differences. MtLYM1 and MtLYM2 proved to be very different with regard to abundance and apparent molecular mass on SDS-PAGE. Both undergo several post-translational modifications, including N-glycosylation and the addition of a GPI anchor, which would position the proteins at the outer face of the plasma membrane. Only MtLYM2, but not MtLYM1, showed specific binding to biotinylated N-acetylchitooctaose in a manner similar to CEBiP, which belongs to the same type. We postulate that LYM2-type proteins likely function in the perception of chitin-related molecules, whereas possible functions of LYM1-type proteins remain to be elucidated.


Plant Signaling & Behavior | 2007

Plant lipid rafts: fluctuat nec mergitur.

Fabienne Furt; Benoit Lefebvre; Julie V. Cullimore; Jean-Jacques Bessoule; Sébastien Mongrand

Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.


Plant Physiology | 2016

PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula

Tatiana Vernié; Sylvie Camut; Céline Camps; Céline Remblière; Fernanda de Carvalho-Niebel; Malick Mbengue; Ton Timmers; Virginie Gasciolli; Richard Thompson; Christine Lesignor; Benoit Lefebvre; Julie V. Cullimore; Christine Hervé

The E3 ubiquitin ligase PUB1 is a common negative regulator for both rhizobial and arbuscular mycorrhizal symbioses and interacts with a key receptor kinase. PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula. In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.

Collaboration


Dive into the Benoit Lefebvre's collaboration.

Top Co-Authors

Avatar

Julie V. Cullimore

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne Imberty

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alessandra Nurisso

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christine Hervé

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Jacques Bono

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Mongrand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Virginie Gasciolli

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Geurts

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge