Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Leemann is active.

Publication


Featured researches published by Christine Leemann.


Nature Medicine | 2005

Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies

Alexandra Trkola; Herbert Kuster; Peter Rusert; Beda Joos; Marek Fischer; Christine Leemann; Amapola Manrique; Michael Huber; Manuela Rehr; Annette Oxenius; Rainer Weber; Gabriela Stiegler; Brigitta Vcelar; Hermann Katinger; Leonardo Aceto; Huldrych F. Günthard

To determine the protective potential of the humoral immune response against HIV-1 in vivo we evaluated the potency of three neutralizing antibodies (2G12, 2F5 and 4E10) in suppressing viral rebound in six acutely and eight chronically HIV-1–infected individuals undergoing interruption of antiretroviral treatment (ART). Only two of eight chronically infected individuals showed evidence of a delay in viral rebound during the passive immunization. Rebound in antibody-treated acutely infected individuals upon cessation of ART was substantially later than in a control group of 12 individuals with acute infection. Escape mutant analysis showed that the activity of 2G12 was crucial for the in vivo effect of the neutralizing antibody cocktail. By providing further direct evidence of the potency, breadth and titers of neutralizing antibodies that are required for in vivo activity, these data underline both the potential and the limits of humoral immunity in controlling HIV-1 infection.


Journal of Virology | 2005

Virus Isolates during Acute and Chronic Human Immunodeficiency Virus Type 1 Infection Show Distinct Patterns of Sensitivity to Entry Inhibitors

Peter Rusert; Herbert Kuster; Beda Joos; Benjamin Misselwitz; Cornelia Gujer; Christine Leemann; Marek Fischer; Gabriela Stiegler; Hermann Katinger; William C. Olson; Rainer Weber; Leonardo Aceto; Huldrych F. Günthard; Alexandra Trkola

ABSTRACT We studied the effect of entry inhibitors on 58 virus isolates derived during acute and chronic infection to validate these inhibitors in vitro and to probe whether viruses at early and chronic disease stages exhibit general differences in the interaction with entry receptors. We included members of all types of inhibitors currently identified: (i) agents that block gp120 binding to CD4 (CD4-IgG2 and monoclonal antibody [MAb] IgG1b12), (ii) compounds that block the interaction with CCR5 (the chemokine RANTES/CCL5, the small-molecule inhibitor AD101, and the anti-CCR5 antibody PRO 140), (iii) the fusion inhibitor enfuvirtide (T-20), and (iv) neutralizing antibodies directed against gp120 (MAb 2G12) and gp41 (MAbs 2F5 and 4E10). No differences between viruses from acute and chronic infections in the susceptibility to inhibitors targeting the CD4 binding site, CCR5, or fusion or to MAb 2G12 were apparent, rendering treatment with entry inhibitors feasible across disease stages. The notable exceptions were antibodies 2F5 and 4E10, which were more potent in inhibiting viruses from acute infection (P = 0.0088 and 0.0005, respectively), although epitopes of these MAbs were equally well preserved in both groups. Activities of these MAbs correlated significantly with each other, suggesting that common features of the viral envelope modulate their potencies.


Journal of Virology | 2007

In Vivo and In Vitro Escape from Neutralizing Antibodies 2G12, 2F5, and 4E10

Amapola Manrique; Peter Rusert; Beda Joos; Marek Fischer; Herbert Kuster; Christine Leemann; Barbara Niederöst; Rainer Weber; Gabriela Stiegler; Hermann Katinger; Huldrych F. Günthard; Alexandra Trkola

ABSTRACT Recently, passive immunization of human immunodeficiency virus (HIV)-infected individuals with monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 provided evidence of the in vivo activity of 2G12 but raised concerns about the function of the two membrane-proximal external region (MPER)-specific MAbs (A. Trkola, H. Kuster, P. Rusert, B. Joos, M. Fischer, C. Leemann, A. Manrique, M. Huber, M. Rehr, A. Oxenius, R. Weber, G. Stiegler, B. Vcelar, H. Katinger, L. Aceto, and H. F. Gunthard, Nat. Med. 11:615-622, 2005). In the light of MPER-targeting vaccines under development, we performed an in-depth analysis of the emergence of mutations conferring resistance to these three MAbs to further elucidate their activity. Clonal analysis of the MPER of plasma virus samples derived during antibody treatment confirmed that no changes in this region had occurred in vivo. Sequence analysis of the 2G12 epitope relevant N-glycosylation sites of viruses derived from 13 patients during the trial supported the phenotypic evaluation, demonstrating that mutations in these sites are associated with resistance. In vitro selection experiments with isolates of four of these individuals corroborated the in vivo finding that virus strains rapidly escape 2G12 pressure. Notably, in vitro resistance mutations differed, in most cases, from those found in vivo. Importantly, in vitro selection with 2F5 and 4E10 demonstrated that resistance to these MAbs can be difficult to achieve and can lead to selection of variants with impaired infectivity. This remarkable vulnerability of the virus to interference within the MPER calls for a further evaluation of the safety and efficacy of MPER-targeting therapeutic and vaccination strategies.


Clinical Infectious Diseases | 2011

Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Diversity and Tropism in 145 Patients With Primary HIV-1 Infection

Philip Rieder; Beda Joos; Alexandra U. Scherrer; Herbert Kuster; Dominique L. Braun; Christina Grube; Barbara Niederöst; Christine Leemann; Sara Gianella; Karin J. Metzner; Jürg Böni; Rainer Weber; Huldrych F. Günthard

BACKGROUND In the context of sexual transmission of human immunodeficiency virus type 1 (HIV-1), current findings suggest that the mucosal barrier is the major site of viral selection, transforming the complex inoculum to a small, homogeneous founder virus population. We analyzed HIV-1 transmission in relation to viral and host characteristics within the Zurich primary HIV-1 infection study. METHODS Clonal HIV-1 envelope sequences (on average 16 clones/patient) were isolated from the first available plasma samples during the early phase of infection from 145 patients with primary HIV-1 infection. Phylogenetic and tropism analyses were performed. Differences of viral diversities were investigated in association with several parameters potentially influencing HIV-1 transmission, eg, concomitant sexually transmitted infections (STIs) and mode of transmission. RESULTS Median viral diversity within env C2-V3-C3 region was 0.39% (range 0.04%-3.23%). Viral diversity did not correlate with viral load, but it was slightly correlated with the duration of infection. Neither transmission mode, gender, nor STI predicted transmission of more heterogeneous founder virus populations that were found in 16 of 145 patients (11%; diversity >1%). Only 2 patients (1.4%) were assuredly infected with CXCR4-tropic HIV-1 within a R5/X4-tropic--mixed population, as revealed and confirmed using several genotypic prediction algorithms and phenotypic assays. CONCLUSIONS Our findings suggest that transmission of multiple HIV-1 variants might be a complex process that is not dependent on mucosal factors alone. CXCR4-tropic viruses can be sexually transmitted in rare instances, but their clinical relevance remains to be determined.


Journal of Virology | 2008

In Vivo Efficacy of Human Immunodeficiency Virus Neutralizing Antibodies: Estimates for Protective Titers

Alexandra Trkola; Herbert Kuster; Peter Rusert; Viktor von Wyl; Christine Leemann; Rainer Weber; Gabriela Stiegler; Hermann Katinger; Beda Joos; Huldrych F. Günthard

ABSTRACT The definition of plasma neutralizing antibody titers capable of controlling human immunodeficiency virus (HIV) infection in vivo is considered a critical step in vaccine development. Here we provide estimates for effective neutralization titers by assessing samples from a recent passive immunization trial with the neutralizing monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 using an analytic strategy that dissects the contributions of these MAbs to the total neutralization activity in patient plasma. Assessment of neutralization activities for six responding patients with partial or complete control of viremia during the MAb treatment and for the eight nonresponding patients revealed a significant difference between these groups: Among responders, MAb-mediated activity exceeded the autologous neutralization response by 1 to 2 log units (median difference, 43.3-fold), while in the nonresponder group, the autologous activity prevailed (median difference, 0.63-fold). In order to reach a 50% proportion of the responders in our study cohort, MAb neutralizing titers higher than 1:200 were required based on this analysis. The disease stage appears to have a significant impact on the quantities needed, since titers above 1:1,000 were needed to reach the same effect in chronic infection. Although our analysis is based on very small sample numbers and thus cannot be conclusive, our data provide a first estimate on how in vitro-measured neutralizing antibody activity can relate to in vivo efficacy in controlling HIV infection and may therefore provide valuable information for vaccine development. Interestingly, lower neutralizing antibody levels showed an effect in acute compared to chronic infection, suggesting that in early disease stages, therapeutic vaccination may show promise. Equally, this raises hopes that a preventive vaccine could become effective at comparatively lower neutralizing antibody titers.


Nucleic Acids Research | 2014

Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations

Francesca Di Giallonardo; Armin Töpfer; Mélanie Rey; Sandhya Prabhakaran; Yannick Duport; Christine Leemann; Stefan Schmutz; Nottania K. Campbell; Beda Joos; Maria Rita Lecca; Andrea Patrignani; Martin Daumer; Christian Beisel; Peter Rusert; Alexandra Trkola; Huldrych F. Günthard; Volker Roth; Niko Beerenwinkel; Karin J. Metzner

Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ∼8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruses.


AIDS | 2010

HIV-1 transmission after cessation of early antiretroviral therapy among men having sex with men.

Philip Rieder; Beda Joos; Viktor von Wyl; Herbert Kuster; Christina Grube; Christine Leemann; Jürg Böni; Sabine Yerly; Thomas Klimkait; Philipp Bürgisser; Rainer Weber; Marek Fischer; Huldrych F. Günthard

Objective:To study transmission dynamics during acute infection, during the aviremic phase over the period of early antiretroviral therapy (ART) and during the phase of viral rebound after early treatment was stopped. Methods:Transmission dynamics was assessed within 111 patients, enrolled in the Zurich primary HIV infection study, by molecular epidemiological methods using pol sequences from genotypic resistance tests and clonal env C2–V3–C3 sequences. Coclustering of Zurich primary HIV infection sequences with 12 303 sequences from 8837 HIV-positive patients enrolled in the multisite Swiss HIV Cohort Study was identified. Furthermore, we investigated transmission patterns within phylogenetic clusters by using longitudinal clinical data and analyzed HIV transmission by stage of infection and attempted to localize transmission events to periods before or after early ART. Results:Six transmission clusters comprising 20 men having sex with men were identified. Furthermore, linkage to eight men having sex with men from the Swiss HIV Cohort Study could be established. Strikingly, we detected at least five new primary infection events originating from Zurich primary HIV infection patients within 16–61 weeks after stopping early ART. Viral loads of likely index patients varied from 314 up to 1 690 000 HIV-1 RNA copies/ml of plasma at the estimated time of infection. Conclusion:The large number of new infections originating from men having sex with men who stopped early ART indicates that current preventive efforts are insufficient. In contrast, these patients showed no adherence problems. These findings argue for early, continuous ART in sexually active HIV-1-infected persons not only for individual patient benefits but also specifically to reduce the spread of HIV-1.


The Journal of Infectious Diseases | 2010

Efficient Suppression of Minority Drug-Resistant HIV Type 1 (HIV-1) Variants Present at Primary HIV-1 Infection by Ritonavir-Boosted Protease Inhibitor-Containing Antiretroviral Therapy

Karin J. Metzner; Pia Rauch; Viktor von Wyl; Christine Leemann; Christina Grube; Herbert Kuster; Jürg Böni; Rainer Weber; Huldrych F. Günthard

BACKGROUND Selection of preexisting minority variants of drug-resistant human immunodeficiency virus type 1 (HIV-1) can lead to virological failure in patients who receive antiretroviral therapy (ART) with low genetic resistance barriers. We studied treatment response and dynamics of minority variants during the first weeks of ART containing a ritonavir-boosted protease inhibitor (PI) and 2 nucleoside reverse-transcriptase inhibitors (NRTIs), which is a regimen with a high genetic resistance barrier. METHODS Plasma samples obtained prior to initiation of ART from 109 patients with primary HIV infection and samples obtained during viral decay during early ART from 17 of these 109 patients were tested by allele-specific polymerase chain reaction for K103N and M184V variants. RESULTS K103N and/or M184V mutations were detected in 15 (13.8%) of 109 patients prior to ART as minority variants. No selection of these variants was observed within the first weeks of ART in 7 of 15 patients with preexisting drug resistance mutations, nor was any selection observed in 10 patients without preexisting drug resistance mutations. Most patients received ART immediately after diagnosis of HIV-1 infection, showed a rapid decrease in viral load, and experienced sufficient suppression of viremia for 48 months. CONCLUSIONS Minority variants, in particular viruses harboring the M184V mutation, were efficiently suppressed in patients with acute infection who received a ritonavir-boosted PI and 2 NRTIs (most regimens included lamivudine). Under this high genetic resistance barrier regimen, the M184V was not further selected.


Journal of Virology | 2005

Low Human Immunodeficiency Virus Envelope Diversity Correlates with Low In Vitro Replication Capacity and Predicts Spontaneous Control of Plasma Viremia after Treatment Interruptions

Beda Joos; Alexandra Trkola; Marek Fischer; Herbert Kuster; Peter Rusert; Christine Leemann; Jürg Böni; Annette Oxenius; David A. Price; Rodney E. Phillips; Joseph K. Wong; Bernard Hirschel; Rainer Weber; Huldrych F. Günthard

ABSTRACT Genetic diversity of viral isolates in human immunodeficiency virus (HIV)-infected individuals varies substantially. However, it remains unclear whether HIV-related disease progresses more rapidly in patients harboring virus swarms with low or high diversity and, in the same context, whether high or low diversity is required to induce potent humoral and cellular immune responses. To explore whether viral diversity predicts virologic control, we studied HIV-infected patients who received antiretroviral therapy (ART) for years before undergoing structured treatment interruptions (STI). Viral diversity before initiation of ART and the ability of the patients to contain viremia after STI and final cessation of treatment was evaluated. Seven out of 21 patients contained plasma viremia at low levels after the final treatment cessation. Clonal sequences encompassing the envelope C2V3C3 domain derived from plasma prior to treatment, exhibited significantly lower diversity in these patients compared to those derived from patients with poor control of viremia. Viral diversity pre-ART correlated with the viral replication capacity of rebounding virus isolates during STI. Neutralizing antibody activity against autologous virus was significantly higher in patients who controlled viremia and was associated with lower pretreatment diversity. No such association was found with binding antibodies directed to gp120. In summary, lower pretreatment viral diversity was associated with spontaneous control of viremia, reduced viral replication capacity and higher neutralizing antibody titers, suggesting a link between viral diversity, replication capacity, and neutralizing antibody activity.


Journal of Virology | 2003

Human Immunodeficiency Virus Type 1 Fitness Is a Determining Factor in Viral Rebound and Set Point in Chronic Infection

Alexandra Trkola; Herbert Kuster; Christine Leemann; Claudia R. Ruprecht; Beda Joos; Amalio Telenti; B. Hirschel; Rainer Weber; Sebastian Bonhoeffer; Huldrych F. Günthard

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART), and replication capacities correlated with pre-ART and post-STI viral set points. Of note, no clinically relevant improvement of viral loads upon STI occurred. Virus isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage, genetic subtype, and sensitivity to neutralizing antibodies. In contrast, viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates, suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary, our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection, and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.

Collaboration


Dive into the Christine Leemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge