Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herbert Kuster is active.

Publication


Featured researches published by Herbert Kuster.


Nature Medicine | 2005

Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies

Alexandra Trkola; Herbert Kuster; Peter Rusert; Beda Joos; Marek Fischer; Christine Leemann; Amapola Manrique; Michael Huber; Manuela Rehr; Annette Oxenius; Rainer Weber; Gabriela Stiegler; Brigitta Vcelar; Hermann Katinger; Leonardo Aceto; Huldrych F. Günthard

To determine the protective potential of the humoral immune response against HIV-1 in vivo we evaluated the potency of three neutralizing antibodies (2G12, 2F5 and 4E10) in suppressing viral rebound in six acutely and eight chronically HIV-1–infected individuals undergoing interruption of antiretroviral treatment (ART). Only two of eight chronically infected individuals showed evidence of a delay in viral rebound during the passive immunization. Rebound in antibody-treated acutely infected individuals upon cessation of ART was substantially later than in a control group of 12 individuals with acute infection. Escape mutant analysis showed that the activity of 2G12 was crucial for the in vivo effect of the neutralizing antibody cocktail. By providing further direct evidence of the potency, breadth and titers of neutralizing antibodies that are required for in vivo activity, these data underline both the potential and the limits of humoral immunity in controlling HIV-1 infection.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HIV rebounds from latently infected cells, rather than from continuing low-level replication

Beda Joos; Marek Fischer; Herbert Kuster; Satish K. Pillai; Joseph K. Wong; Jürg Böni; Bernard Hirschel; Rainer Weber; Alexandra Trkola; Huldrych F. Günthard

Rapid rebound of plasma viremia in patients after interruption of long-term combination antiretroviral therapy (cART) suggests persistence of low-level replicating cells or rapid reactivation of latently infected cells. To further characterize rebounding virus, we performed extensive longitudinal clonal evolutionary studies of HIV env C2-V3-C3 regions and exploited the temporal relationships of rebounding plasma viruses with regard to pretreatment sequences in 20 chronically HIV-1-infected patients having undergone multiple 2-week structured treatment interruptions (STI). Rebounding virus during the short STI was homogeneous, suggesting mono- or oligoclonal origin during reactivation. No evidence for a temporal structure of rebounding virus in regard to pretreatment sequences was found. Furthermore, expansion of distinct lineages at different STI cycles emerged. Together, these findings imply stochastic reactivation of different clones from long-lived latently infected cells rather than expansion of viral populations replicating at low levels. After treatment was stopped, diversity increased steadily, but pretreatment diversity was, on average, achieved only >2.5 years after the start of STI when marked divergence from preexisting quasispecies also emerged. In summary, our results argue against persistence of ongoing low-level replication in patients on suppressive cART. Furthermore, a prolonged delay in restoration of pretreatment viral diversity after treatment interruption demonstrates a surprisingly sustained evolutionary bottleneck induced by punctuated antiretroviral therapy.


PLOS Medicine | 2006

Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

Michael Huber; Marek Fischer; Benjamin Misselwitz; Amapola Manrique; Herbert Kuster; Barbara Niederöst; Rainer Weber; Viktor von Wyl; Huldrych F. Günthard; Alexandra Trkola

Background To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. Methods and Findings Sera from two groups of patients—25 with acute HIV-1 infection and 31 with chronic infection—were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env) proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. Conclusions Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.


Transplant Infectious Disease | 2010

Molecular evidence of interhuman transmission in an outbreak of Pneumocystis jirovecii pneumonia among renal transplant recipients.

Sara Gianella; L. Haeberli; Beda Joos; B. Ledergerber; Rudolf P. Wüthrich; Rainer Weber; Herbert Kuster; P.M. Hauser; Thomas Fehr; Nicolas J. Mueller

S. Gianella, L. Haeberli, B. Joos, B. Ledergerber, R.P.  Wüthrich, R. Weber, H. Kuster, P.M. Hauser, T. Fehr, N.J. Mueller. Molecular evidence of interhuman transmission in an outbreak of Pneumocystis jirovecii pneumonia among renal transplant recipients.
Transpl Infect Dis 2010: 12: 1–10. All rights reserved


Journal of Virology | 2005

Virus Isolates during Acute and Chronic Human Immunodeficiency Virus Type 1 Infection Show Distinct Patterns of Sensitivity to Entry Inhibitors

Peter Rusert; Herbert Kuster; Beda Joos; Benjamin Misselwitz; Cornelia Gujer; Christine Leemann; Marek Fischer; Gabriela Stiegler; Hermann Katinger; William C. Olson; Rainer Weber; Leonardo Aceto; Huldrych F. Günthard; Alexandra Trkola

ABSTRACT We studied the effect of entry inhibitors on 58 virus isolates derived during acute and chronic infection to validate these inhibitors in vitro and to probe whether viruses at early and chronic disease stages exhibit general differences in the interaction with entry receptors. We included members of all types of inhibitors currently identified: (i) agents that block gp120 binding to CD4 (CD4-IgG2 and monoclonal antibody [MAb] IgG1b12), (ii) compounds that block the interaction with CCR5 (the chemokine RANTES/CCL5, the small-molecule inhibitor AD101, and the anti-CCR5 antibody PRO 140), (iii) the fusion inhibitor enfuvirtide (T-20), and (iv) neutralizing antibodies directed against gp120 (MAb 2G12) and gp41 (MAbs 2F5 and 4E10). No differences between viruses from acute and chronic infections in the susceptibility to inhibitors targeting the CD4 binding site, CCR5, or fusion or to MAb 2G12 were apparent, rendering treatment with entry inhibitors feasible across disease stages. The notable exceptions were antibodies 2F5 and 4E10, which were more potent in inhibiting viruses from acute infection (P = 0.0088 and 0.0005, respectively), although epitopes of these MAbs were equally well preserved in both groups. Activities of these MAbs correlated significantly with each other, suggesting that common features of the viral envelope modulate their potencies.


Journal of Virology | 2007

In Vivo and In Vitro Escape from Neutralizing Antibodies 2G12, 2F5, and 4E10

Amapola Manrique; Peter Rusert; Beda Joos; Marek Fischer; Herbert Kuster; Christine Leemann; Barbara Niederöst; Rainer Weber; Gabriela Stiegler; Hermann Katinger; Huldrych F. Günthard; Alexandra Trkola

ABSTRACT Recently, passive immunization of human immunodeficiency virus (HIV)-infected individuals with monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 provided evidence of the in vivo activity of 2G12 but raised concerns about the function of the two membrane-proximal external region (MPER)-specific MAbs (A. Trkola, H. Kuster, P. Rusert, B. Joos, M. Fischer, C. Leemann, A. Manrique, M. Huber, M. Rehr, A. Oxenius, R. Weber, G. Stiegler, B. Vcelar, H. Katinger, L. Aceto, and H. F. Gunthard, Nat. Med. 11:615-622, 2005). In the light of MPER-targeting vaccines under development, we performed an in-depth analysis of the emergence of mutations conferring resistance to these three MAbs to further elucidate their activity. Clonal analysis of the MPER of plasma virus samples derived during antibody treatment confirmed that no changes in this region had occurred in vivo. Sequence analysis of the 2G12 epitope relevant N-glycosylation sites of viruses derived from 13 patients during the trial supported the phenotypic evaluation, demonstrating that mutations in these sites are associated with resistance. In vitro selection experiments with isolates of four of these individuals corroborated the in vivo finding that virus strains rapidly escape 2G12 pressure. Notably, in vitro resistance mutations differed, in most cases, from those found in vivo. Importantly, in vitro selection with 2F5 and 4E10 demonstrated that resistance to these MAbs can be difficult to achieve and can lead to selection of variants with impaired infectivity. This remarkable vulnerability of the virus to interference within the MPER calls for a further evaluation of the safety and efficacy of MPER-targeting therapeutic and vaccination strategies.


Clinical Infectious Diseases | 2011

Characterization of Human Immunodeficiency Virus Type 1 (HIV-1) Diversity and Tropism in 145 Patients With Primary HIV-1 Infection

Philip Rieder; Beda Joos; Alexandra U. Scherrer; Herbert Kuster; Dominique L. Braun; Christina Grube; Barbara Niederöst; Christine Leemann; Sara Gianella; Karin J. Metzner; Jürg Böni; Rainer Weber; Huldrych F. Günthard

BACKGROUND In the context of sexual transmission of human immunodeficiency virus type 1 (HIV-1), current findings suggest that the mucosal barrier is the major site of viral selection, transforming the complex inoculum to a small, homogeneous founder virus population. We analyzed HIV-1 transmission in relation to viral and host characteristics within the Zurich primary HIV-1 infection study. METHODS Clonal HIV-1 envelope sequences (on average 16 clones/patient) were isolated from the first available plasma samples during the early phase of infection from 145 patients with primary HIV-1 infection. Phylogenetic and tropism analyses were performed. Differences of viral diversities were investigated in association with several parameters potentially influencing HIV-1 transmission, eg, concomitant sexually transmitted infections (STIs) and mode of transmission. RESULTS Median viral diversity within env C2-V3-C3 region was 0.39% (range 0.04%-3.23%). Viral diversity did not correlate with viral load, but it was slightly correlated with the duration of infection. Neither transmission mode, gender, nor STI predicted transmission of more heterogeneous founder virus populations that were found in 16 of 145 patients (11%; diversity >1%). Only 2 patients (1.4%) were assuredly infected with CXCR4-tropic HIV-1 within a R5/X4-tropic--mixed population, as revealed and confirmed using several genotypic prediction algorithms and phenotypic assays. CONCLUSIONS Our findings suggest that transmission of multiple HIV-1 variants might be a complex process that is not dependent on mucosal factors alone. CXCR4-tropic viruses can be sexually transmitted in rare instances, but their clinical relevance remains to be determined.


Journal of Virology | 2008

In Vivo Efficacy of Human Immunodeficiency Virus Neutralizing Antibodies: Estimates for Protective Titers

Alexandra Trkola; Herbert Kuster; Peter Rusert; Viktor von Wyl; Christine Leemann; Rainer Weber; Gabriela Stiegler; Hermann Katinger; Beda Joos; Huldrych F. Günthard

ABSTRACT The definition of plasma neutralizing antibody titers capable of controlling human immunodeficiency virus (HIV) infection in vivo is considered a critical step in vaccine development. Here we provide estimates for effective neutralization titers by assessing samples from a recent passive immunization trial with the neutralizing monoclonal antibodies (MAbs) 2G12, 2F5, and 4E10 using an analytic strategy that dissects the contributions of these MAbs to the total neutralization activity in patient plasma. Assessment of neutralization activities for six responding patients with partial or complete control of viremia during the MAb treatment and for the eight nonresponding patients revealed a significant difference between these groups: Among responders, MAb-mediated activity exceeded the autologous neutralization response by 1 to 2 log units (median difference, 43.3-fold), while in the nonresponder group, the autologous activity prevailed (median difference, 0.63-fold). In order to reach a 50% proportion of the responders in our study cohort, MAb neutralizing titers higher than 1:200 were required based on this analysis. The disease stage appears to have a significant impact on the quantities needed, since titers above 1:1,000 were needed to reach the same effect in chronic infection. Although our analysis is based on very small sample numbers and thus cannot be conclusive, our data provide a first estimate on how in vitro-measured neutralizing antibody activity can relate to in vivo efficacy in controlling HIV infection and may therefore provide valuable information for vaccine development. Interestingly, lower neutralizing antibody levels showed an effect in acute compared to chronic infection, suggesting that in early disease stages, therapeutic vaccination may show promise. Equally, this raises hopes that a preventive vaccine could become effective at comparatively lower neutralizing antibody titers.


Antimicrobial Agents and Chemotherapy | 2006

Long-Term Multiple-Dose Pharmacokinetics of Human Monoclonal Antibodies (MAbs) against Human Immunodeficiency Virus Type 1 Envelope gp120 (MAb 2G12) and gp41 (MAbs 4E10 and 2F5)

Beda Joos; Alexandra Trkola; Herbert Kuster; Leonardo Aceto; Marek Fischer; Gabriela Stiegler; Christine Armbruster; Brigitta Vcelar; Hermann Katinger; Huldrych F. Günthard

ABSTRACT While certain antibodies directed against the human immunodeficiency virus (HIV) envelope have the potential to suppress virus replication in vitro, the impact of neutralizing antibodies in vivo remains unclear. In a recent proof-of-concept study, the broadly neutralizing monoclonal antibodies 2G12, 4E10, and 2F5 exhibited inhibitory activities in vivo, as exemplified by a delay of the viral rebound following the interruption of antiretroviral therapy. Unexpectedly, the antiviral effect seen was most prominently due to 2G12 activity. To further investigate whether differential HIV-inhibitory activity was due to different pharmacokinetic properties of the antibodies, we performed a formal pharmacokinetic analysis with 14 patients. Repeated infusions at high dose levels were well tolerated by the patients and did not elicit an endogenous immune response against the monoclonal antibodies. The pharmacokinetic parameters of all three antibodies correlated with each other. Mean estimates were 0.047, 0.035, and 0.044 liter/kg for the central volume of distribution of 2G12, 4E10, and 2F5, respectively, and 0.0018, 0.0058, and 0.0077 liter/kg · day for the systemic clearance of 2G12, 4E10, and 2F5, respectively. Monoclonal antibody 2G12 had a significantly longer elimination half-life (21.8 ± 7.2 days [P < 0.0001]) than monoclonal antibodies 4E10 (5.5 ± 2.2 days) and 2F5 (4.3 ± 1.1 days). The comprehensive pharmacokinetic data from this long-term multiple-dose phase II study were coherent with those from previous short-term phase I studies, as assessed by compartmental and noncompartmental techniques. The anti-HIV type 1 antibodies studied showed distribution and elimination kinetics similar to those seen for other human-like antibodies. Further studies examining tissue concentrations to explain the differential in vivo activity of the anti-gp120 antibody compared with those of the two anti-gp41 antibodies are warranted.


AIDS | 2010

HIV-1 transmission after cessation of early antiretroviral therapy among men having sex with men.

Philip Rieder; Beda Joos; Viktor von Wyl; Herbert Kuster; Christina Grube; Christine Leemann; Jürg Böni; Sabine Yerly; Thomas Klimkait; Philipp Bürgisser; Rainer Weber; Marek Fischer; Huldrych F. Günthard

Objective:To study transmission dynamics during acute infection, during the aviremic phase over the period of early antiretroviral therapy (ART) and during the phase of viral rebound after early treatment was stopped. Methods:Transmission dynamics was assessed within 111 patients, enrolled in the Zurich primary HIV infection study, by molecular epidemiological methods using pol sequences from genotypic resistance tests and clonal env C2–V3–C3 sequences. Coclustering of Zurich primary HIV infection sequences with 12 303 sequences from 8837 HIV-positive patients enrolled in the multisite Swiss HIV Cohort Study was identified. Furthermore, we investigated transmission patterns within phylogenetic clusters by using longitudinal clinical data and analyzed HIV transmission by stage of infection and attempted to localize transmission events to periods before or after early ART. Results:Six transmission clusters comprising 20 men having sex with men were identified. Furthermore, linkage to eight men having sex with men from the Swiss HIV Cohort Study could be established. Strikingly, we detected at least five new primary infection events originating from Zurich primary HIV infection patients within 16–61 weeks after stopping early ART. Viral loads of likely index patients varied from 314 up to 1 690 000 HIV-1 RNA copies/ml of plasma at the estimated time of infection. Conclusion:The large number of new infections originating from men having sex with men who stopped early ART indicates that current preventive efforts are insufficient. In contrast, these patients showed no adherence problems. These findings argue for early, continuous ART in sexually active HIV-1-infected persons not only for individual patient benefits but also specifically to reduce the spread of HIV-1.

Collaboration


Dive into the Herbert Kuster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge