Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine M. Foreman is active.

Publication


Featured researches published by Christine M. Foreman.


Science | 2008

Ubiquity of Biological Ice Nucleators in Snowfall

Brent C. Christner; Cindy E. Morris; Christine M. Foreman; Rongman Cai; David C. Sands

Despite the integral role of ice nucleators (IN) in atmospheric processes leading to precipitation, their sources and distributions have not been well established. We examined IN in snowfall from mid- and high-latitude locations and found that the most active were biological in origin. Of the IN larger than 0.2 micrometer that were active at temperatures warmer than -7�C, 69 to 100% were biological, and a substantial fraction were bacteria. Our results indicate that the biosphere is a source of highly active IN and suggest that these biological particles may affect the precipitation cycle and/or their own precipitation during atmospheric transport.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow

Brent C. Christner; Rongman Cai; Cindy E. Morris; Kevin S. McCarter; Christine M. Foreman; Mark L. Skidmore; Scott N. Montross; David C. Sands

Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than −10 °C). We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was ≥ −5 °C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0–100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. Statistical analysis revealed seasonal similarities between warm-temperature ice-nucleating activities in snow samples collected over 7 months in Montana. Multiple regression was used to construct models with biogeochemical data [major ions, total organic carbon (TOC), particle, and cell concentration] that were accurate in predicting the concentration of microbial cells and biological IN in precipitation based on the concentration of TOC, Ca2+, and NH4+, or TOC, cells, Ca2+, NH4+, K+, PO43−, SO42−, Cl−, and HCO3−. Our results indicate that biological IN are ubiquitous in precipitation and that for some geographic locations the activity and concentration of these particles is related to the season and precipitation chemistry. Thus, our research suggests that biological IN are widespread in the atmosphere and may affect meteorological processes that lead to precipitation.


Journal of Geophysical Research | 2007

Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica

Christine M. Foreman; Birgit Sattler; Jill A. Mikucki; Dorota L. Porazinska; John C. Priscu

[1] Metabolic activity and biogeochemical diversity within cryoconites from the Canada, Commonwealth, Howard, and Hughes glaciers in the McMurdo Dry Valleys revealed the presence of a productive microbial refuge in this polar desert ecosystem. Fluorescent in situ hybridization showed a high percentage of Cytophaga-Flavobacteria cells in cryoconite sediments (87.2%), while b-Proteobacterial cells dominated the ice overlying the sediment layer (54.2%). The biomass of bacterial cells in the sediments was also greater (4.82 mgC ml � 1 ) than that in the overlying ice (0.18 mgC ml � 1 ) and was related to bacterial productivity (on the basis of thymidine incorporation), which ranged from 36 ng Cl � 1 d � 1 in the overlying ice to 3329 ng C l � 1 d � 1 in the sediment-containing layers. Bacteria within both the sediments and overlying ice were able to actively incorporate and respire radio-labeled glucose, as well as 17 other dissolved organic carbon compounds. The cryoconites in the Taylor Valley support an active, diverse assemblage of organisms despite the fact that they may remain sealed from the atmosphere for decades. Given the density of the cryoconites in the dry valleys (� 4–6% of ablation zone surfaces), flushing of the cryoconites during warm years could provide a vital nutrient and organic carbon source to the surrounding polar desert.


Arctic, Antarctic, and Alpine Research | 2010

Carotenoid Pigmentation in Antarctic Heterotrophic Bacteria as a Strategy to Withstand Environmental Stresses

Markus Dieser; Mark C. Greenwood; Christine M. Foreman

Abstract Bacterial strains isolated from Antarctic environments were used to assess the role of carotenoid pigments as cryo- and solar radiation protectants. Isolates were subjected to one hundred 12-hr freeze-thaw cycles and exposed to ambient simulated solar radiation (300 Wm−2) with growth recovery evaluated after pre-set time intervals. Differences in survival were observed between carotenoid pigmented and non-pigmented strains in response to the different stresses based upon the enumeration of colony forming units. On average carotenoid pigmented strains were more resistant to freeze-thaw cycles as compared to the non-pigmented strains. Survival for non-pigmented strains decreased precipitously from 2 × 107 to 1.5 × 104 cells mL−1, on average, within the first 20 cycles. Similar results were found in the solar radiation experiments. After 2 hrs of solar radiation exposure, 61% of the pigmented organisms survived versus 0.01% for the non-pigmented isolates. We applied an additive mixed model to estimate differences between the carotenoid pigmented and non-pigmented bacterial groups. Modeled results confirmed a positive effect of pigmentation on survivability and provide evidence that carotenoid pigmentation in heterotrophic bacteria isolated from Antarctic environments increases resistance to environmental stressors.


Annals of Glaciology | 2010

Carbon fluxes through bacterial communities on glacier surfaces

Alexandre M. Anesio; Birgit Sattler; Christine M. Foreman; Jon Telling; Andy Hodson; Martyn Tranter; Roland Psenner

Abstract There is very little information about the activity of microbial communities on the surface of glaciers, though there is an increasing body of evidence to show that they strongly influence the biogeochemistry of these habitats. We measured bacterial abundance and production in cryoconite holes on Arctic, Antarctic and Alpine glaciers in order to estimate the role of heterotrophic bacteria within the carbon budget of glacial ecosystems. Our results demonstrate an active bacterial community on the surface of glaciers with doubling times that vary from a few hours to hundreds of days depending on the glacier and position (water or sediments) within the cryoconite hole. However, bacterial production is only ∼2–3% of the published literature values of community respiration from similar habitats, indicating that other types of microbes (e.g. eukaryotic organisms) may also play a role in the C cycle of glaciers. We estimate that only up to 7% of the organic C in cryoconite sediments is utilized by the heterotrophic bacterial community annually, suggesting that the surface of glaciers can accumulate organic carbon, and that this C may be important for biogeochemical activity downstream to adjacent ecosystems.


Aquatic Sciences | 2004

Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake

Jennifer R. Fulton; Diane M. McKnight; Christine M. Foreman; Rose M. Cory; Colin A. Stedmon; Elisabeth Blunt

Abstract.The McMurdo Dry Valleys of Antarctica contain many permanently ice-covered lakes that support populations of algae and bacteria in the water column. In these lakes the concentration of dissolved organic carbon (DOC) is typically greatest at depth. In Lake Fryxell, the DOC concentration is 25 mg C/L at 18 m and 5 mg C/L at 5 m, just below the ice-cover. Dissolved humic substances account for about 20–24% of the DOC in the lake water. The DOC sources to the photic zone of this lake are streamflow, extracellular release by phytoplankton and benthic algal mats and upward diffusion across the oxycline at 9.5 m. Experiments with fulvic acids isolated from four depths show that these humic substances have the capacity to act as electron acceptors in the anoxic degradation of acetate by an iron-and humic-reducing microorganism. We used fluorescence spectroscopy to characterize the abundance and redox state of the quinone functional groups in the oxidized and reduced fulvic acids in these experiments and in filtered whole water samples from the lake. The fluorescence intensity of fulvic acid was greater in the oxycline and bottomwaters than in the photic zone. This result suggests that incorporation of quinone functional groups into humic substances may be enhanced in zones of high bacterial activity. Statistical analysis of the excitation emission matrices (EEMs) was used to evaluate trends in the fulvic acid redox state with depth. The results indicate that fulvic acid in the upper photic zone was in an oxidized state and that fulvic acid in the bottomwaters was in a reduced state. The shift in the EEMs indicating a more reduced state occurred in the vicinity of the oxycline (8 to 11 m). The shift in the EEMs began in the zone from 8 and 9 m, where dissolved oxygen concentrations range from to 5 and 10 mg L–1, suggesting that fulvic acid was oxidized upon upward diffusion from the oxycline. This oxidation may be an abiotic process in which reduced humic substances interact with ferric iron generated in this zone.


Geomicrobiology Journal | 2004

Thermodynamic Constraints on Microbially Mediated Processes in Lakes of the McMurdo Dry Valleys, Antarctica

Peter A. Lee; Jill A. Mikucki; Christine M. Foreman; John C. Priscu; Giacomo R. DiTullio; Sarah F. Riseman; Stephen de Mora; Craig F. Wolf; Laurie Kester

Recent research has shown that the distribution of biogenic nitrogen and sulfur compounds (in particular, N 2 O, DMS and dissolved DMSO) observed in five perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica, appear to lack obvious biogeochemical explanations. This study examined the hypothesis that the distribution of these compounds resulted from thermodynamic constraints on microbially mediated processes. The thermodynamic favorableness of a number of ecologically important redox reactions in these lakes was assessed using a simplified Nernst equation and mathematically modified E h measurements. Our qualitative analysis revealed that the relative dominance of denitrification and nitrification as formation and loss processes for N 2 O was a complex pattern that was related to the redox conditions present. The results indicate that nitrification was initially the sole pathway for the formation of N 2 O with denitrification being thermodynamically unfavorable. As the redox conditions became less oxic, both denitrification and nitrification were possible. Once complete anoxia occurred, the importance of nitrification decreased considerably and the loss of N 2 O via denitrification became increasingly important. With respect to DMSO, the results indicated that DMSO was thermodynamically unfavorable as an electron acceptor for the respiration of organic material by bacteria in well-oxygenated environments, giving a partial explanation for the relatively elevated levels of DMSO found in many aquatic environments. Overall, the results of this study showed that subtle variations in the redox conditions present provided a plausible explanation for the unusual distributions of biogenic sulfur and nitrogen compounds observed in the lakes of the McMurdo Dry Valleys.


Rapid Communications in Mass Spectrometry | 2015

An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability

Juliana D'Andrilli; William T. Cooper; Christine M. Foreman; Alan G. Marshall

Rationale Determining the chemical constituents of natural organic matter (NOM) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICRMS) remains the ultimate measure for probing its source material, evolution, and transport; however, lability and the fate of organic matter (OM) in the environment remain controversial. FTICRMS-derived elemental compositions are presented in this study to validate a new interpretative method to determine the extent of NOM lability from various environments. Methods FTICRMS data collected over the last decade from the same 9.4 tesla instrument using negative electrospray ionization at the National High Magnetic Field Laboratory in Tallahassee, Florida, was used to validate the application of a NOM lability index. Solid-phase extraction cartridges were used to isolate the NOM prior to FTICRMS; mass spectral peaks were calibrated internally by commonly identified NOM homologous series, and molecular formulae were determined for NOM composition and lability analysis. Results A molecular lability boundary (MLB) was developed from the FTICRMS molecular data, visualized from van Krevelen diagrams, dividing the data into more and less labile constituents. NOM constituents above the MLB at H/C ≥1.5 correspond to more labile material, whereas NOM constituents below the MLB, H/C <1.5, exhibit less labile, more recalcitrant character. Of all marine, freshwater, and glacial environments considered for this study, glacial ecosystems were calculated to contain the most labile OM. Conclusions The MLB extends our interpretation of FTICRMS NOM molecular data to include a metric of lability, and generally ranked the OM environments from most to least labile as glacial > marine > freshwater. Applying the MLB is useful not only for individual NOM FTICRMS studies, but also provides a lability threshold to compare and contrast molecular data with other FTICRMS instruments that survey NOM from around the world. Copyright


FEMS Microbiology Ecology | 2011

When a habitat freezes solid: Microorganisms over-winter within the ice column of a coastal Antarctic lake

Christine M. Foreman; Markus Dieser; Mark C. Greenwood; Rose M. Cory; Johanna Laybourn-Parry; John T. Lisle; Christopher Jaros; Penney L. Miller; Yu Ping Chin; Diane M. McKnight

A major impediment to understanding the biology of microorganisms inhabiting Antarctic environments is the logistical constraint of conducting field work primarily during the summer season. However, organisms that persist throughout the year encounter severe environmental changes between seasons. In an attempt to bridge this gap, we collected ice core samples from Pony Lake in early November 2004 when the lake was frozen solid to its base, providing an archive for the biological and chemical processes that occurred during winter freezeup. The ice contained bacteria and virus-like particles, while flagellated algae and ciliates over-wintered in the form of inactive cysts and spores. Both bacteria and algae were metabolically active in the ice core melt water. Bacterial production ranged from 1.8 to 37.9 μg CL(-1) day(-1). Upon encountering favorable growth conditions in the melt water, primary production ranged from 51 to 931 μg CL(-1) day(-1). Because of the strong H(2) S odor and the presence of closely related anaerobic organisms assigned to Pony Lake bacterial 16S rRNA gene clones, we hypothesize that the microbial assemblage was strongly affected by oxygen gradients, which ultimately restricted the majority of phylotypes to distinct strata within the ice column. This study provides evidence that the microbial community over-winters in the ice column of Pony Lake and returns to a highly active metabolic state when spring melt is initiated.


Environmental Research Letters | 2013

Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica

Christine M. Foreman; Rose M. Cory; Cindy E. Morris; Michael D. SanClements; Heidi J. Smith; John T. Lisle; Penney L. Miller; Yu Ping Chin; Diane M. McKnight

During the austral summers of 2004 and 2009, we sampled a supraglacial stream on the Cotton Glacier, Antarctica. The stream dissolved organic matter (DOM) was low (44?48??M?C) and lacked detectable humic fluorescence signatures. Analysis of the excitation emissions matrices (EEMs) indicated that amino-acid fluorophores dominated, consistent with DOM of microbial origin, with little humic-like fluorescence. In most aquatic ecosystems, humic DOM attenuates harmful UV radiation and its absence may represent an additional stressor influencing the microbial community. Nonetheless, the stream contained an active microbial assemblage with bacterial cell abundances from 2.94???104 to 4.97???105?cells?ml?1, and bacterial production ranging from 58.8 to 293.2?ng?C?l?1?d?1. Chlorophyll-a concentrations ranged from 0.3 to 0.53??g?l?1 indicating that algal phototrophs were the probable source of the DOM. Microbial isolates produced a rainbow of pigment colors, suggesting adaptation to stress, and were similar to those from other cryogenic systems (Proteobacteria and Bacteroidetes lineages). Supraglacial streams provide an example of contemporary microbial processes on the glacier surface and a natural laboratory for studying microbial adaptation to the absence of humics.

Collaboration


Dive into the Christine M. Foreman's collaboration.

Top Co-Authors

Avatar

John C. Priscu

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane M. McKnight

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Dieser

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Jaros

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

John T. Lisle

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge