Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Markus Dieser is active.

Publication


Featured researches published by Markus Dieser.


Arctic, Antarctic, and Alpine Research | 2010

Carotenoid Pigmentation in Antarctic Heterotrophic Bacteria as a Strategy to Withstand Environmental Stresses

Markus Dieser; Mark C. Greenwood; Christine M. Foreman

Abstract Bacterial strains isolated from Antarctic environments were used to assess the role of carotenoid pigments as cryo- and solar radiation protectants. Isolates were subjected to one hundred 12-hr freeze-thaw cycles and exposed to ambient simulated solar radiation (300 Wm−2) with growth recovery evaluated after pre-set time intervals. Differences in survival were observed between carotenoid pigmented and non-pigmented strains in response to the different stresses based upon the enumeration of colony forming units. On average carotenoid pigmented strains were more resistant to freeze-thaw cycles as compared to the non-pigmented strains. Survival for non-pigmented strains decreased precipitously from 2 × 107 to 1.5 × 104 cells mL−1, on average, within the first 20 cycles. Similar results were found in the solar radiation experiments. After 2 hrs of solar radiation exposure, 61% of the pigmented organisms survived versus 0.01% for the non-pigmented isolates. We applied an additive mixed model to estimate differences between the carotenoid pigmented and non-pigmented bacterial groups. Modeled results confirmed a positive effect of pigmentation on survivability and provide evidence that carotenoid pigmentation in heterotrophic bacteria isolated from Antarctic environments increases resistance to environmental stressors.


The ISME Journal | 2014

Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet

Markus Dieser; Erik L J E Broemsen; Karen A. Cameron; Gary M King; Amanda M. Achberger; Kyla Choquette; Birgit Hagedorn; Ron Sletten; Karen Junge; Brent C. Christner

Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59–100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ13C-CH4 values between −64‰ and −62‰ together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ∼30 days incubation at ∼4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks.


Environmental Microbiology | 2015

Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet

Karen A. Cameron; Birgit Hagedorn; Markus Dieser; Brent C. Christner; Kyla Choquette; Ronald S. Sletten; Byron C. Crump; Colleen T. E. Kellogg; Karen Junge

Snow overlays the majority of the Greenland Ice Sheet (GrIS). However, there is very little information available on the microbiological assemblages that are associated with this vast and climate-sensitive landscape. In this study, the structure and diversity of snow microbial assemblages from two regions of the western GrIS ice margin were investigated through the sequencing of small subunit ribosomal RNA genes. The origins of the microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Chloroplastida). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The snow microbial assemblages were more similar to communities characterized in soil than to those documented in marine ecosystems. Despite this, the chemical composition of snow samples was consistent with a marine contribution, and strong correlations existed between bacterial beta diversity and the concentration of Na(+) and Cl(-) . These results suggest that surface snow from western regions of Greenland contains exogenous microbiota that were likely aerosolized from more distant soil sources, transported in the atmosphere and co-precipitated with the snow.


FEMS Microbiology Ecology | 2011

When a habitat freezes solid: Microorganisms over-winter within the ice column of a coastal Antarctic lake

Christine M. Foreman; Markus Dieser; Mark C. Greenwood; Rose M. Cory; Johanna Laybourn-Parry; John T. Lisle; Christopher Jaros; Penney L. Miller; Yu Ping Chin; Diane M. McKnight

A major impediment to understanding the biology of microorganisms inhabiting Antarctic environments is the logistical constraint of conducting field work primarily during the summer season. However, organisms that persist throughout the year encounter severe environmental changes between seasons. In an attempt to bridge this gap, we collected ice core samples from Pony Lake in early November 2004 when the lake was frozen solid to its base, providing an archive for the biological and chemical processes that occurred during winter freezeup. The ice contained bacteria and virus-like particles, while flagellated algae and ciliates over-wintered in the form of inactive cysts and spores. Both bacteria and algae were metabolically active in the ice core melt water. Bacterial production ranged from 1.8 to 37.9 μg CL(-1) day(-1). Upon encountering favorable growth conditions in the melt water, primary production ranged from 51 to 931 μg CL(-1) day(-1). Because of the strong H(2) S odor and the presence of closely related anaerobic organisms assigned to Pony Lake bacterial 16S rRNA gene clones, we hypothesize that the microbial assemblage was strongly affected by oxygen gradients, which ultimately restricted the majority of phylotypes to distinct strata within the ice column. This study provides evidence that the microbial community over-winters in the ice column of Pony Lake and returns to a highly active metabolic state when spring melt is initiated.


Applied and Environmental Microbiology | 2013

DNA Double-Strand Break Repair at 15°C

Markus Dieser; John R. Battista; Brent C. Christner

ABSTRACT The survival of microorganisms in ancient glacial ice and permafrost has been ascribed to their ability to persist in a dormant, metabolically inert state. An alternative possibility, supported by experimental data, is that microorganisms in frozen matrices are able to sustain a level of metabolic function that is sufficient for cellular repair and maintenance. To examine this experimentally, frozen populations of Psychrobacter arcticus 273-4 were exposed to ionizing radiation (IR) to simulate the damage incurred from natural background IR sources in the permafrost environment from over ∼225 kiloyears (ky). High-molecular-weight DNA was fragmented by exposure to 450 Gy of IR, which introduced an average of 16 double-strand breaks (DSBs) per chromosome. During incubation at −15°C for 505 days, P. arcticus repaired DNA DSBs in the absence of net growth. Based on the time frame for the assembly of genomic fragments by P. arcticus, the rate of DNA DSB repair was estimated at 7 to 10 DSBs year−1 under the conditions tested. Our results provide direct evidence for the repair of DNA lesions, extending the range of complex biochemical reactions known to occur in bacteria at frozen temperatures. Provided that sufficient energy and nutrient sources are available, a functional DNA repair mechanism would allow cells to maintain genome integrity and augment microbial survival in icy terrestrial or extraterrestrial environments.


Environmental Research Letters | 2013

Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica

Kaelin M. Cawley; Diane M. McKnight; Penney L. Miller; Rose M. Cory; Ryan L. Fimmen; Jennifer J. Guerard; Markus Dieser; Christopher Jaros; Yu Ping Chin; Christine M. Foreman

Dissolved humic material (HDOM) is ubiquitous to all natural waters and its source material influences its chemical structure, reactivity, and bioavailability. While terrestrially derived HDOM reference materials distributed by the International Humic Substances Society (IHSS) have been readily available to engineering and scientific communities, a microbially derived reference HDOM was not, despite the well-characterized differences in the chemistry and reactivity of HDOM derived from terrestrial versus microbial sources. To address this gap, we collected a microbial reference fulvic acid from Pony Lake (PLFA) for distribution through the IHSS. Pony Lake is a saline coastal pond on Ross Island, Antarctica, where the landscape is devoid of terrestrial plants. Sample collection occurred over a 17-day period in the summer season at Pony Lake. During this time, the dissolved organic carbon (DOC) concentrations increased nearly two-fold, and the fulvic acid fraction (collected using the XAD-8 method) accounted for 14.6% of the DOC. During the re-concentration and desalting procedures we isolated two other chemically distinct fulvic acid fractions: (1) PLFA-2, which was high in carbohydrates and (2) PLFA-CER, which was high in nitrogen. The chemical characteristics (elemental analysis, optical characterization with UV‐vis and fluorescence spectroscopy, and 13 C NMR spectroscopy) of the three fulvic acid fractions helped to explain their behavior during isolation.


Applied and Environmental Microbiology | 2013

Double-strand DNA break repair at -15°C

Markus Dieser; John R. Battista; Brent C. Christner

ABSTRACT The survival of microorganisms in ancient glacial ice and permafrost has been ascribed to their ability to persist in a dormant, metabolically inert state. An alternative possibility, supported by experimental data, is that microorganisms in frozen matrices are able to sustain a level of metabolic function that is sufficient for cellular repair and maintenance. To examine this experimentally, frozen populations of Psychrobacter arcticus 273-4 were exposed to ionizing radiation (IR) to simulate the damage incurred from natural background IR sources in the permafrost environment from over ∼225 kiloyears (ky). High-molecular-weight DNA was fragmented by exposure to 450 Gy of IR, which introduced an average of 16 double-strand breaks (DSBs) per chromosome. During incubation at −15°C for 505 days, P. arcticus repaired DNA DSBs in the absence of net growth. Based on the time frame for the assembly of genomic fragments by P. arcticus, the rate of DNA DSB repair was estimated at 7 to 10 DSBs year−1 under the conditions tested. Our results provide direct evidence for the repair of DNA lesions, extending the range of complex biochemical reactions known to occur in bacteria at frozen temperatures. Provided that sufficient energy and nutrient sources are available, a functional DNA repair mechanism would allow cells to maintain genome integrity and augment microbial survival in icy terrestrial or extraterrestrial environments.


Antarctic Science | 2010

Viable microbes in ice: Application of molecular assays to McMurdo Dry Valley lake ice communities

Markus Dieser; Andreas Nocker; John C. Priscu; Christine M. Foreman

Abstract The permanent ice covers of the McMurdo Dry Valley lakes, Antarctica, are colonized by a diverse microbial assemblage. We collected ice cores from Lakes Fryxell, Hoare and Bonney. Propidium monoazide (PMA) was used in combination with quantitative PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE) to examine membrane integrity of prokaryotes in these extreme environments. PMA selectively penetrates cells with compromised membranes and modifies their DNA resulting in the suppression of PCR amplification. Our results based on analysis of 16S rRNA genes demonstrate that despite the hostile conditions of the Dry Valleys, the permanent ice covers of the lakes support a ‘potentially viable’ microbial community. The level of membrane integrity, as well as diversity, was higher in samples where sediment was entrapped in the ice cover. Pronounced differences in the fraction of cells with intact and compromised cell membranes were found for Lake Fryxell and east lobe of Lake Bonney, both expressed in differences in DGGE banding patterns and qPCR signal reductions. Limitations in the ability to distinguish between intact or compromised cells occurred in samples from Lake Hoare and west lobe of Lake Bonney due to low DNA template concentrations recovered from the samples.


Antarctic Science | 2013

Physicochemical and biological dynamics in a coastal Antarctic lake as it transitions from frozen to open water

Markus Dieser; Christine M. Foreman; Christopher Jaros; John T. Lisle; Mark C. Greenwood; Johanna Laybourn-Parry; Penney L. Miller; Yu-Ping Chin; Diane M. McKnight

Abstract Pony Lake, at Cape Royds, Antarctica, is a shallow, eutrophic, coastal lake that freezes solid in the winter. Changes in Pony Lakes physicochemical parameters and microbial community were studied during the transition from ice to open water. Due to rising water temperatures, the progressive melt of the ice column and the gradual mixing of basal brines into the remaining water column, Pony Lake evolved physically and chemically over the course of the summer, thereby affecting the microbial community composition. Temperature, pH, conductivity, nutrients and major ion concentrations reached their maximum in January. Pony Lake was colonized by bacteria, viruses, phytoflagellates, ciliates, and a small number of rotifers. Primary and bacterial production were highest in mid-December (2.66 mg C l-1 d-1 and 30.5 μg C l-1 d-1, respectively). A 16S rRNA gene analysis of the bacterioplankton revealed 34 unique sequences dominated by members of the β- and γ-proteobacteria lineages. Cluster analyses on denaturing gradient gel electrophoresis (DGGE) banding patterns and community structure indicated a shift in the dominant members of the microbial community during the transition from winter ice, to early, and late summer lakewater. Our data demonstrate that temporal changes in physicochemical parameters during the summer months determine community dynamics and mediate changes in microbial species composition.


FEMS Microbiology Ecology | 2018

Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments

Hj Smith; Markus Dieser; Diane M. McKnight; SanClements; Christine M. Foreman

ABSTRACT Vast expanses of Earths surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica and on the west Greenland Ice Sheet (GrIS), evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria andFlavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier and west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein‐like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments and cryoconite holes) were linked to DOM containing more humic‐like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM‐microbe interactions playing an integral role in shaping communities on local and polar spatial scales.

Collaboration


Dive into the Markus Dieser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane M. McKnight

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Birgit Hagedorn

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar

Christopher Jaros

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Kyla Choquette

University of Alaska Anchorage

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Penney L. Miller

Rose-Hulman Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karen A. Cameron

Geological Survey of Denmark and Greenland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge