Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine M. Labno is active.

Publication


Featured researches published by Christine M. Labno.


Immunity | 2001

WASP Recruitment to the T Cell:APC Contact Site Occurs Independently of Cdc42 Activation

Christine M. Labno; Gerra Bosco; Abhinav Seth; Mary H.K McGavin; Katherine A. Siminovitch; Michael K. Rosen; Janis K. Burkhardt

Cdc42 and WASP are critical regulators of actin polymerization whose function during T cell signaling is poorly understood. Using a novel reagent that specifically detects Cdc42-GTP in fixed cells, we found that activated Cdc42 localizes to the T cell:APC contact site in an antigen-dependent manner. TCR signaling alone was sufficient to induce localization of Cdc42-GTP, and functional Lck and Zap-70 kinases were required. WASP also localized to the T cell:APC contact site in an antigen-dependent manner. Surprisingly, WASP localization was independent of the Cdc42 binding domain but required the proline-rich domain. Our results indicate that localized WASP activation requires the integration of multiple signals: WASP is recruited via interaction with SH3 domain-containing proteins and is activated by Cdc42-GTP concentrated at the same site.


Nature Immunology | 2005

Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse

Timothy S. Gomez; Michael J. Hamann; Sean McCarney; Doris N. Savoy; Casey M. Lubking; Michael P. Heldebrant; Christine M. Labno; David J. McKean; Mark A. McNiven; Janis K. Burkhardt; Daniel D. Billadeau

Actin reorganization at the immunological synapse is required for the amplification and generation of a functional immune response. Using small interfering RNA, we show here that dynamin 2 (Dyn2), a large GTPase involved in receptor-mediated internalization, did not alter antibody-mediated T cell receptor internalization but considerably affected T cell receptor–stimulated T cell activation by regulating multiple biochemical signaling pathways and the accumulation of F-actin at the immunological synapse. Moreover, Dyn2 interacted directly with the Rho family guanine nucleotide exchange factor Vav1, and this interaction was required for T cell activation. These data identify a functionally important interaction between Dyn2 and Vav1 that regulates actin reorganization and multiple signaling pathways in T lymphocytes.


Current Biology | 2003

Itk Functions to Control Actin Polymerization at the Immune Synapse through Localized Activation of Cdc42 and WASP

Christine M. Labno; Carol Lewis; Daoqi You; Daisy W. Leung; Ana Takesono; Natalie Kamberos; Abhinav Seth; Lisa D. Finkelstein; Michael K. Rosen; Pamela L. Schwartzberg; Janis K. Burkhardt

Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes. Since T cells from Rlk-/-, Itk-/-, and Rlk-/- x Itk-/- mice have defects in signaling and development, we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk-/- and Rlk-/- x Itk-/- T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.


Journal of Immunology | 2005

Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton

Derek Dombroski; Richard A. Houghtling; Christine M. Labno; Patricia Precht; Aya Takesono; Natasha J. Caplen; Daniel D. Billadeau; Ronald L. Wange; Janis K. Burkhardt; Pamela L. Schwartzberg

The Tec family kinase Itk is an important regulator of Ca2+ mobilization and is required for in vivo responses to Th2-inducing agents. Recent data also implicate Itk in TCR-induced regulation of the actin cytoskeleton. We have evaluated the requirements for Itk function in TCR-induced actin polarization. Reduction of Itk expression via small interfering RNA treatment of the Jurkat human T lymphoma cell line or human peripheral blood T cells disrupted TCR-induced actin polarization, a defect that correlated with decreased recruitment of the Vav guanine nucleotide exchange factor to the site of Ag contact. Vav localization and actin polarization could be rescued by re-expression of either wild-type or kinase-inactive murine Itk but not by Itk containing mutations affecting the pleckstrin homology or Src homology 2 domains. Additionally, we find that Itk is constitutively associated with Vav. Loss of Itk expression did not alter gross patterns of Vav tyrosine phosphorylation but appeared to disrupt the interactions of Vav with SLP-76. Expression of membrane-targeted Vav, Vav-CAAX, can rescue the small interfering RNA to Itk-induced phenotype, implicating the alteration in Vav localization as directly contributing to the actin polarization defect. These data suggest a kinase-independent scaffolding function for Itk in the regulation of Vav localization and TCR-induced actin polarization.


Journal of Immunology | 2001

Superantigen-Induced T Cell:B Cell Conjugation Is Mediated by LFA-1 and Requires Signaling Through Lck, But Not ZAP-70

Margaret M. Morgan; Christine M. Labno; Gijs A. van Seventer; Michael F. Denny; David Straus; Janis K. Burkhardt

The formation of a conjugate between a T cell and an APC requires the activation of integrins on the T cell surface and remodeling of cytoskeletal elements at the cell-cell contact site via inside-out signaling. The early events in this signaling pathway are not well understood, and may differ from the events involved in adhesion to immobilized ligands. We find that conjugate formation between Jurkat T cells and EBV-B cells presenting superantigen is mediated by LFA-1 and absolutely requires Lck. Mutations in the Lck kinase, Src homology 2 or 3 domains, or the myristoylation site all inhibit conjugation to background levels, and adhesion cannot be restored by the expression of Fyn. However, ZAP-70-deficient cells conjugate normally, indicating that Lck is required for LFA-1-dependent adhesion via other downstream pathways. Several drugs that inhibit T cell adhesion to ICAM-1 immobilized on plastic, including inhibitors of mitogen-activated protein/extracellular signal-related kinase kinase, phosphatidylinositol-3 kinase, and calpain, do not inhibit conjugation. Inhibitors of phospholipase C and protein kinase C block conjugation of both wild-type and ZAP-70-deficient cells, suggesting that a phospholipase C that does not depend on ZAP-70 for its activation is involved. These results are not restricted to Jurkat T cells; Ag-specific primary T cell blasts behave similarly. Although the way in which Lck signals to enhance LFA-1-dependent adhesion is not clear, we find that cells lacking functional Lck fail to recruit F-actin and LFA-1 to the T cell:APC contact site, whereas ZAP-70-deficient cells show a milder phenotype characterized by disorganized actin and LFA-1 at the contact site.


PLOS ONE | 2010

Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

Stephanie K. Mewborn; Megan J. Puckelwartz; Fida Abuisneineh; John P. Fahrenbach; Yuan Zhang; Heather MacLeod; Lisa Dellefave; Peter Pytel; Sara Selig; Christine M. Labno; Harinder Singh; Elizabeth M. McNally

Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the laminas ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.


Science Translational Medicine | 2014

Cell Distance Mapping Identifies Functional T Follicular Helper Cells in Inflamed Human Renal Tissue

Vladimir M. Liarski; Natalya V. Kaverina; Anthony Chang; Daniel Brandt; Denisse Yanez; Lauren Talasnik; Gianluca Carlesso; Ronald Herbst; Tammy O. Utset; Christine M. Labno; Yahui Peng; Yulei Jiang; Maryellen L. Giger; Marcus R. Clark

Visualizing and quantifying the spatial relationships between T and B cells identifies adaptive immune cell networks in human inflammation. Putting Human Inflammation on the Map B cells cannot fight infection by antigen stimulation alone—they need help from T cells. In mice, two-photon electron microscopy has demonstrated that T follicular helper (TFH) cells are critical for providing B cell help in germinal centers. However, it has remained unclear whether—and if so, how—TFH cells provide B cell help in humans. Now, Liarski et al. report that cell distance mapping (CDM) can be used to demonstrate cognate TFH-mediated B cell help in the context of human inflammation. CDM is a computational tool that quantifies spatial relationships between different cell types in tissue. The authors used CDM to measure the internuclear distances between TFH and B cells in inflamed human tissues. They were able to discriminate between noncognate and cognate interactions, which are required for providing help. They also characterized cognate-competent TFH cells and found that they expressed Bcl-6 and IL-21. This technique should be generalizable to diverse antigen presentation and immune cell interactions and, if so, should enhance our knowledge of the immune system in situ. T follicular helper (TFH) cells are critical for B cell activation in germinal centers and are often observed in human inflamed tissue. However, it is difficult to know if they contribute in situ to inflammation. Expressed markers define TFH subsets associated with distinct functions in vitro. However, such markers may not reflect in situ function. The delivery of T cell help to B cells requires direct cognate recognition. We hypothesized that by visualizing and quantifying such interactions, we could directly assess TFH cell competency in situ. Therefore, we developed computational tools to quantify spatial relationships between different cell subtypes in tissue [cell distance mapping (CDM)]. Analysis of inflamed human tissues indicated that measurement of internuclear distances between TFH and B cells could be used to discriminate between apparent cognate and noncognate interactions. Furthermore, only cognate-competent TFH cell populations expressed high levels of Bcl-6 and interleukin-21. These data suggest that CDM can be used to identify adaptive immune cell networks driving in situ inflammation. Such knowledge should help identify diseases, and disease subsets, that may benefit from therapeutic targeting of specific T cell–antigen-presenting cell interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Endocytic sequestration of the B cell antigen receptor and toll-like receptor 9 in anergic cells

Shannon K. O'Neill; Margaret Veselits; Miao Zhang; Christine M. Labno; Yanxia Cao; Alison Finnegan; Melissa Uccellini; Maria-Luisa Alegre; John C. Cambier; Marcus R. Clark

In autoimmune prone murine strains, sequential engagement of the B cell antigen receptor (BCR) on the cell surface and toll-like receptors (TLRs) in late endosomes is necessary and sufficient for secretion of autoantibodies. However, ubiquitous nucleoprotein self-antigens fail to elicit productive TLR activation, and break self-tolerance in anergic DNA-reactive B cells. The mechanisms limiting TLR activation in these cells are largely unknown. Here, we demonstrate that in anergic 3H9/Vκ8 and Ars/A1 B cells the normal endocytic transit of both the ligated BCR and TLR9 into late endosomes is abrogated. The BCR and TLR9 arrest together just outside late endosomes, indicating that they enter this compartment along a single, regulated endocytic route. Access to late endosomes could be restored by reversing anergy through several methods, including conferring genetic susceptibility to autoimmunity, complementing proximal BCR signaling or by preventing BCR binding to self-antigen. Downstream of the BCR, JNK, which is activated in naive but not anergic B cells, regulated entry into late endosomes. Restoration of BCR and TLR9 endocytic trafficking rescued TLR9 activation by BCR-captured ligands. These results indicate that B cell anergy is reinforced by the exclusion of both TLRs and their BCR captured ligands from subcellular environments necessary for TLR activation.


Journal of Immunology | 2009

Hematopoietic Lineage Cell-Specific Protein 1 Is Recruited to the Immunological Synapse by IL-2-Inducible T Cell Kinase and Regulates Phospholipase Cγ1 Microcluster Dynamics during T Cell Spreading

Esteban Carrizosa; Timothy S. Gomez; Christine M. Labno; Deborah A. Klos Dehring; Xiaohong Liu; Bruce D. Freedman; Daniel D. Billadeau; Janis K. Burkhardt

Productive T cell activation requires efficient reorganization of the actin cytoskeleton. We showed previously that the actin-regulatory protein, hematopoietic lineage cell-specific protein 1 (HS1), is required for the stabilization of F-actin and Vav1 at the immunological synapse and for efficient calcium responses. The Tec family kinase IL-2-inducible T cell kinase (Itk) regulates similar aspects of T cell activation, suggesting that these proteins act in the same pathway. Using video microscopy, we show that T cells lacking Itk or HS1 exhibited similar defects in actin responses, extending unstable lamellipodial protrusions upon TCR stimulation. HS1 and Itk could be coimmunoprecipitated from T cell lysates, and GST-pulldown studies showed that Itk’s Src homology 2 domain binds directly to two phosphotyrosines in HS1. In the absence of Itk, or in T cells overexpressing an Itk Src homology 2 domain mutant, HS1 failed to localize to the immunological synapse, indicating that Itk serves to recruit HS1 to sites of TCR engagement. Because Itk is required for phospholipase C (PLC)γ1 phosphorylation and calcium store release, we examined the calcium signaling pathway in HS1−/− T cells in greater detail. In response to TCR engagement, T cells lacking HS1 exhibited diminished calcium store release, but TCR-dependent PLCγ1 phosphorylation was intact, indicating that HS1’s role in calcium signaling is distinct from that of Itk. HS1-deficient T cells exhibited defective cytoskeletal association of PLCγ1 and altered formation of PLCγ1 microclusters. We conclude that HS1 functions as an effector of Itk in the T cell actin-regulatory pathway, and directs the spatial organization of PLCγ1 signaling complexes.


Human Molecular Genetics | 2015

Disruption of the lamin A and matrin-3 interaction by myopathic LMNA mutations

Frederic F.S. Depreux; Megan J. Puckelwartz; Aleksandra Augustynowicz; Don Wolfgeher; Christine M. Labno; Dynora Pierre-Louis; Danielle Cicka; Stephen J. Kron; James M. Holaska; Elizabeth M. McNally

The nuclear face of the nuclear membrane is enriched with the intermediate filament protein lamin A. Mutations in LMNA, the gene encoding lamin A, lead to a diverse set of inherited conditions including myopathies that affect both the heart and skeletal muscle. To gain insight about lamin A protein interactions, binding proteins associated with the tail of lamin A were characterized. Of 130 nuclear proteins found associated with the lamin A tail, 17 (13%) were previously described lamin A binding partners. One protein not previously linked to lamin A, matrin-3, was selected for further study, because like LMNA mutations, matrin-3 has also been implicated in inherited myopathy. Matrin-3 binds RNA and DNA and is a nucleoplasmic protein originally identified from the insoluble nuclear fraction, referred to as the nuclear matrix. Anti-matrin-3 antibodies were found to co-immunoprecipitate lamin A, and the lamin-A binding domain was mapped to the carboxy-terminal half of matrin-3. Three-dimensional mapping of the lamin A-matrin-3 interface showed that the LMNA truncating mutation Δ303, which lacks the matrin-3 binding domain, was associated with an increased distance between lamin A and matrin-3. LMNA mutant cells are known to have altered biophysical properties and the matrin-3-lamin A interface is positioned to contribute to these defects.

Collaboration


Dive into the Christine M. Labno's collaboration.

Top Co-Authors

Avatar

Janis K. Burkhardt

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce D. Freedman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Esteban Carrizosa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Abhinav Seth

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge