Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine M. Miller is active.

Publication


Featured researches published by Christine M. Miller.


Molecular Cell | 2004

Acetylation of the C terminus of Ku70 by CBP and PCAF controls bax-mediated apoptosis

Haim Y. Cohen; Siva Lavu; Kevin J. Bitterman; Brian Hekking; Thomas A Imahiyerobo; Christine M. Miller; Roy A. Frye; Hidde L. Ploegh; Benedikt M. Kessler; David A. Sinclair

Apoptosis is a key tumor suppression mechanism that can be initiated by activation of the proapoptotic factor Bax. The Ku70 DNA end-joining protein has recently been shown to suppress apoptosis by sequestering Bax from mitochondria. The mechanism by which Bax is regulated remains unknown. Here, we identify eight lysines in Ku70 that are targets for acetylation in vivo. Five of these, K539, K542, K544, K533, and K556, lie in the C-terminal linker domain of Ku70 adjacent to the Bax interaction domain. We show that CBP and PCAF efficiently acetylate K542 in vitro and associate with Ku70 in vivo. Mimicking acetylation of K539 or K542 or treating cells with deacetylase inhibitors abolishes the ability of Ku70 to suppress Bax-mediated apoptosis. We demonstrate that increased acetylation of Ku70 disrupts the Ku70-Bax interaction and coincides with cytoplasmic accumulation of CBP. These results shed light on the role of acetyltransferases as tumor suppressors.


Cell | 2013

Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy

Francesco Loffredo; Matthew L. Steinhauser; Steven M. Jay; Joseph Gannon; James R. Pancoast; Pratyusha Yalamanchi; Manisha Sinha; Claudia Dall’Osso; Danika Mei Po Khong; J Shadrach; Christine M. Miller; Britta Swebilius Singer; Alex Stewart; Nikolaos Psychogios; Robert E. Gerszten; Adam J. Hartigan; Mi-Jeong Kim; Thomas Serwold; Amy J. Wagers; Richard T. Lee

The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify the biological mechanisms that drive cardiac hypertrophy in aging, we tested the influence of circulating factors using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation. After 4 weeks of exposure to the circulation of young mice, cardiac hypertrophy in old mice dramatically regressed, accompanied by reduced cardiomyocyte size and molecular remodeling. Reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of parabiosis, implicating a blood-borne factor. Using modified aptamer-based proteomics, we identified the TGF-β superfamily member GDF11 as a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.


Science | 2014

Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle

Manisha Sinha; Young C. Jang; Juhyun Oh; Danika Mei Po Khong; Elizabeth Y Wu; Rohan Manohar; Christine M. Miller; Samuel G. Regalado; Francesco Loffredo; James R. Pancoast; Michael F. Hirshman; Jessica Lebowitz; Jennifer L. Shadrach; Massimiliano Cerletti; Mi Jeong Kim; Thomas Serwold; Laurie J. Goodyear; Bernard Rosner; Richard T. Lee; Amy J. Wagers

Help the Aged Muscle function declines with age, as does neurogenesis in certain brain regions. Two teams analyzed the effects of heterochronic parabiosis in mice. Sinha et al. (p. 649) found that when an aged mouse shares a circulatory system with a youthful mouse, the aged mouse sees improved muscle function, and Katsimpardi et al. (p. 630) observed increased generation of olfactory neurons. In both cases, Growth Differentiation Factor 11 appeared to be one of the key components of the young blood. A circulating growth factor promotes youthful muscles and brains in aged mice. Parabiosis experiments indicate that impaired regeneration in aged mice is reversible by exposure to a young circulation, suggesting that young blood contains humoral “rejuvenating” factors that can restore regenerative function. Here, we demonstrate that the circulating protein growth differentiation factor 11 (GDF11) is a rejuvenating factor for skeletal muscle. Supplementation of systemic GDF11 levels, which normally decline with age, by heterochronic parabiosis or systemic delivery of recombinant protein, reversed functional impairments and restored genomic integrity in aged muscle stem cells (satellite cells). Increased GDF11 levels in aged mice also improved muscle structural and functional features and increased strength and endurance exercise capacity. These data indicate that GDF11 systemically regulates muscle aging and may be therapeutically useful for reversing age-related skeletal muscle and stem cell dysfunction.


Science | 2014

Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors

Lida Katsimpardi; Nadia K. Litterman; Pamela A. Schein; Christine M. Miller; Francesco Loffredo; Gregory R. Wojtkiewicz; John W. Chen; Richard T. Lee; Amy J. Wagers; Lee L. Rubin

Help the Aged Muscle function declines with age, as does neurogenesis in certain brain regions. Two teams analyzed the effects of heterochronic parabiosis in mice. Sinha et al. (p. 649) found that when an aged mouse shares a circulatory system with a youthful mouse, the aged mouse sees improved muscle function, and Katsimpardi et al. (p. 630) observed increased generation of olfactory neurons. In both cases, Growth Differentiation Factor 11 appeared to be one of the key components of the young blood. A circulating growth factor promotes youthful muscles and brains in aged mice. In the adult central nervous system, the vasculature of the neurogenic niche regulates neural stem cell behavior by providing circulating and secreted factors. Age-related decline of neurogenesis and cognitive function is associated with reduced blood flow and decreased numbers of neural stem cells. Therefore, restoring the functionality of the niche should counteract some of the negative effects of aging. We show that factors found in young blood induce vascular remodeling, culminating in increased neurogenesis and improved olfactory discrimination in aging mice. Further, we show that GDF11 alone can improve the cerebral vasculature and enhance neurogenesis. The identification of factors that slow the age-dependent deterioration of the neurogenic niche in mice may constitute the basis for new methods of treating age-related neurodegenerative and neurovascular diseases.


Aging Cell | 2007

Design and synthesis of compounds that extend yeast replicative lifespan.

Hongying Yang; Joseph A. Baur; Allen Chen; Christine M. Miller; David A. Sinclair

This past decade has seen the identification of numerous conserved genes that extend lifespan in diverse species, yet the number of compounds that extend lifespan is relatively small. A class of compounds called STACs, which were identified as activators of Sir2/SIRT1 NAD+‐dependent deacetylases, extend the lifespans of multiple species in a Sir2‐dependent manner and can delay the onset of age‐related diseases such as cancer, diabetes and neurodegeneration in model organisms. Plant‐derived STACs such as fisetin and resveratrol have several liabilities, including poor stability and relatively low potency as SIRT1 activators. To develop improved STACs, stilbene derivatives with modifications at the 4’ position of the B ring were synthesized using a Horner‐Emmons‐based synthetic route or by hydrolyzing deoxyrhapontin. Here, we describe synthetic STACs with lower toxicity toward human cells, and higher potency with respect to SIRT1 activation and lifespan extension in Saccharomyces cerevisiae. These studies show that it is possible to improve upon naturally occurring STACs based on a number of criteria including lifespan extension.


Neuron | 2014

Diminished Schwann Cell Repair Responses Underlie Age-Associated Impaired Axonal Regeneration

Michio W. Painter; Amanda Brosius Lutz; Yung-Chih Cheng; Alban Latremoliere; Kelly Duong; Christine M. Miller; Sean Posada; Enrique J. Cobos; Alice X. Zhang; Amy J. Wagers; Leif A. Havton; Ben A. Barres; Takao Omura; Clifford J. Woolf

The regenerative capacity of the peripheral nervous system declines with age. Why this occurs, however, is unknown. We demonstrate that 24-month-old mice exhibit an impairment of functional recovery after nerve injury compared to 2-month-old animals. We find no difference in the intrinsic growth capacity between aged and young sensory neurons in vitro or in their ability to activate growth-associated transcriptional programs after injury. Instead, using age-mismatched nerve transplants in vivo, we show that the extent of functional recovery depends on the age of the nerve graft, and not the age of the host. Molecular interrogation of the sciatic nerve reveals that aged Schwann cells (SCs) fail to rapidly activate a transcriptional repair program after injury. Functionally, aged SCs exhibit impaired dedifferentiation, myelin clearance, and macrophage recruitment. These results suggest that the age-associated decline in axonal regeneration results from diminished Schwann cell plasticity, leading to slower myelin clearance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Sarcomas induced in discrete subsets of prospectively isolated skeletal muscle cells

Simone Hettmer; Jianing Liu; Christine M. Miller; Melissa C. Lindsay; Cynthia A. Sparks; David A. Guertin; Roderick T. Bronson; David M. Langenau; Amy J. Wagers

Soft-tissue sarcomas are heterogeneous cancers that can present with tissue-specific differentiation markers. To examine the cellular basis for this histopathological variation and to identify sarcoma-relevant molecular pathways, we generated a chimeric mouse model in which sarcoma-associated genetic lesions can be introduced into discrete, muscle-resident myogenic and mesenchymal cell lineages. Expression of Kirsten rat sarcoma viral oncogene [Kras(G12V)] and disruption of cyclin-dependent kinase inhibitor 2A (CDKN2A; p16p19) in prospectively isolated satellite cells gave rise to pleomorphic rhabdomyosarcomas (MyoD-, Myogenin- and Desmin-positive), whereas introduction of the same oncogenetic hits in nonmyogenic progenitors induced pleomorphic sarcomas lacking myogenic features. Transcriptional profiling demonstrated that myogenic and nonmyogenic Kras; p16p19null sarcomas recapitulate gene-expression signatures of human rhabdomyosarcomas and identified a cluster of genes that is concordantly up-regulated in both mouse and human sarcomas. This cluster includes genes associated with Ras and mechanistic target of rapamycin (mTOR) signaling, a finding consistent with activation of the Ras and mTOR pathways both in Kras; p16p19null sarcomas and in 26–50% of human rhabdomyosarcomas surveyed. Moreover, chemical inhibition of Ras or mTOR signaling arrested the growth of mouse Kras; p16p19null sarcomas and of human rhabdomyosarcoma cells in vitro and in vivo. Taken together, these data demonstrate the critical importance of lineage commitment within the tumor cell-of-origin in determining sarcoma histotype and introduce an experimental platform for rapid dissection of sarcoma-relevant cellular and molecular events.


Cell | 2016

EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection

Benjamin A. Olenchock; Javid Moslehi; Alan H. Baik; Shawn M. Davidson; Jeremy Williams; William J. Gibson; Abhishek A. Chakraborty; Kerry A. Pierce; Christine M. Miller; Eric A. Hanse; Ameeta Kelekar; Lucas B. Sullivan; Amy J. Wagers; Clary B. Clish; Matthew G. Vander Heiden; William G. Kaelin

Ischemic preconditioning is the phenomenon whereby brief periods of sublethal ischemia protect against a subsequent, more prolonged, ischemic insult. In remote ischemic preconditioning (RIPC), ischemia to one organ protects others organs at a distance. We created mouse models to ask if inhibition of the alpha-ketoglutarate (αKG)-dependent dioxygenase Egln1, which senses oxygen and regulates the hypoxia-inducible factor (HIF) transcription factor, could suffice to mediate local and remote ischemic preconditioning. Using somatic gene deletion and a pharmacological inhibitor, we found that inhibiting Egln1 systemically or in skeletal muscles protects mice against myocardial ischemia-reperfusion (I/R) injury. Parabiosis experiments confirmed that RIPC in this latter model was mediated by a secreted factor. Egln1 loss causes accumulation of circulating αKG, which drives hepatic production and secretion of kynurenic acid (KYNA) that is necessary and sufficient to mediate cardiac ischemic protection in this setting.


Journal of Immunology | 2015

Young, Proliferative Thymic Epithelial Cells Engraft and Function in Aging Thymuses

Mi-Jeong Kim; Christine M. Miller; Jennifer L. Shadrach; Amy J. Wagers; Thomas Serwold

The thymus reaches its maximum size early in life and then begins to shrink, producing fewer T cells with increasing age. This thymic decline is thought to contribute to age-related T cell lymphopenias and hinder T cell recovery after bone marrow transplantation. Although several cellular and molecular processes have been implicated in age-related thymic involution, their relative contributions are not known. Using heterochronic parabiosis, we observe that young circulating factors are not sufficient to drive regeneration of the aged thymus. In contrast, we find that resupplying young, engraftable thymic epithelial cells (TECs) to a middle-aged or defective thymus leads to thymic growth and increased T cell production. Intrathymic transplantation and in vitro colony-forming assays reveal that the engraftment and proliferative capacities of TECs diminish early in life, whereas the receptivity of the thymus to TEC engraftment remains relatively constant with age. These results support a model in which thymic growth and subsequent involution are driven by cell-intrinsic changes in the proliferative capacity of TECs, and further show that young TECs can engraft and directly drive the growth of involuted thymuses.


Cell | 2016

Erratum: EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection (Cell (2016) 164 (884-895))

Benjamin A. Olenchock; Javid Moslehi; Alan H. Baik; Shawn M. Davidson; Jeremy Williams; William J. Gibson; Abhishek A. Chakraborty; Kerry A. Pierce; Christine M. Miller; Eric Hanse; Ameeta Kelekar; Lucas B. Sullivan; Amy J. Wagers; Clary B. Clish; Matthew G. Vander Heiden; William G. Kaelin

Due to an oversight in the preparation of this article, the authors inadvertently neglected to include Abhishek A. Chakraborty in the author list. He has been added to the author list, and his contributions are now noted in the Author Contributions section of the article online.

Collaboration


Dive into the Christine M. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Loffredo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan H. Baik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge