Christine McMahon
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine McMahon.
Blood | 2012
Britta Will; Li Zhou; Thomas O. Vogler; Susanna Ben-Neriah; Carolina Schinke; Roni Tamari; Yiting Yu; Tushar D. Bhagat; Sanchari Bhattacharyya; Laura Barreyro; Christoph Heuck; Yonkai Mo; Samir Parekh; Christine McMahon; Andrea Pellagatti; Jacqueline Boultwood; Cristina Montagna; Lewis B. Silverman; Jaroslaw P. Maciejewski; John M. Greally; B. Hilda Ye; Alan F. List; Christian Steidl; Ulrich Steidl; Amit Verma
Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.
Cancer Research | 2010
Julie H. Ostrander; Christine McMahon; Siya Lem; Stacy R. Millon; J. Quincy Brown; Victoria L. Seewaldt; Nimmi Ramanujam
Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)-positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearsons correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models.
Cancer Research | 2011
Li Zhou; Christine McMahon; Tushar D. Bhagat; Cristina Alencar; Yiting Yu; Melissa Fazzari; Davendra Sohal; Christoph Heuck; Krishna Gundabolu; Chun Ng; Yongkai Mo; Wa Shen; Amittha Wickrema; Guanghui Kong; Ellen Friedman; Lubomir Sokol; Giannis Mantzaris; Andrea Pellagatti; Jacqueline Boultwood; Leonidas C. Platanias; Ulrich Steidl; Lei Yan; Jonathan M. Yingling; Michael Lahn; Alan F. List; Markus Bitzer; Amit Verma
Even though myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, the molecular alterations that lead to marrow failure have not been well elucidated. We have previously shown that the myelosuppressive TGF-β pathway is constitutively activated in MDS progenitors. Because there is conflicting data about upregulation of extracellular TGF-β levels in MDS, we wanted to determine the molecular basis of TGF-β pathway overactivation and consequent hematopoietic suppression in this disease. We observed that SMAD7, a negative regulator of TGF-β receptor I (TBRI) kinase, is markedly decreased in a large meta-analysis of gene expression studies from MDS marrow-derived CD34(+) cells. SMAD7 protein was also found to be significantly decreased in MDS marrow progenitors when examined immunohistochemically in a bone marrow tissue microarray. Reduced expression of SMAD7 in hematopoietic cells led to increased TGF-β-mediated gene transcription and enhanced sensitivity to TGF-β-mediated suppressive effects. The increased TGF-β signaling due to SMAD7 reduction could be effectively inhibited by a novel clinically relevant TBRI (ALK5 kinase) inhibitor, LY-2157299. LY-2157299 could inhibit TGF-β-mediated SMAD2 activation and hematopoietic suppression in primary hematopoietic stem cells. Furthermore, in vivo administration of LY-2157299 ameliorated anemia in a TGF-β overexpressing transgenic mouse model of bone marrow failure. Most importantly, treatment with LY-2157199 stimulated hematopoiesis from primary MDS bone marrow specimens. These studies demonstrate that reduction in SMAD7 is a novel molecular alteration in MDS that leads to ineffective hematopoiesis by activating of TGF-β signaling in hematopoietic cells. These studies also illustrate the therapeutic potential of TBRI inhibitors in MDS.
American Journal of Clinical Pathology | 2007
Christine McMahon; Kareem Abu-Elmagd; Franklin A. Bontempo; Jeffrey A. Kant; Steven H. Swerdlow
Catastrophic intra-abdominal thrombosis can result from a variety of prothrombotic states, including polycythemia vera and essential thrombocythemia, both of which are frequently associated with an acquired mutation (V617F) in the JAK2 gene. To assess the prevalence and clinical implications of this mutation in the setting of intra-abdominal thrombosis, JAK2 V617F genotyping was performed in 42 patients who had catastrophic intra-abdominal thromboses resulting in visceral transplants. The prevalence of V617F was compared with that of other prothrombotic states for which molecular testing is routinely performed. V617F mutations were detected in 7 patients (17%), who were not distinguishable on the basis of their peripheral blood cell counts. The median posttransplantation survival of V617F+ patients was 17.5 months, compared with 116.4 months for the V617F- patients (ratio, 6.6; 95% confidence interval, 6.3-7.0). These results highlight the diagnostic usefulness of JAK2 V617F testing in this setting and underscore the clinical significance of a positive result.
Journal of Hematology & Oncology | 2012
Niraj Shenoy; Rachel Kessel; Tushar D. Bhagat; Sanchari Bhattacharyya; Yiting Yu; Christine McMahon; Amit Verma
Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.
Cancer Research | 2006
Timothy S. Fenske; Christine McMahon; Deepa Edwin; Joseph C. Jarvis; James M. Cheverud; Matthew Minn; Vikram Mathews; Molly A. Bogue; Michael A. Province; Howard L. McLeod; Timothy A. Graubert
Secondary malignancies are a serious adverse consequence of alkylator chemotherapy. The risk of developing an alkylator-associated malignancy is influenced by genetic background, although the relevant genetic factors are poorly understood. To screen for novel susceptibility factors, we established a mouse model of alkylator-induced malignancy. We exposed mice from 20 inbred strains to the prototypical alkylating agent, N-nitroso-N-ethylurea (ENU). ENU was a potent carcinogen in many of the strains tested, inducing 140 tumors in 240 ENU-treated mice (66% incidence of at least one tumor in evaluable mice), compared with a background incidence of 8% spontaneous tumors in 240 strain-, age-, and sex-matched control mice (relative risk, 8.4; P < 0.0001). A wide variety of tumor histologies were noted, including epithelial carcinomas, soft tissue sarcomas, and hematopoietic tumors. Cancer susceptibility was a heritable trait for the most common tumor types, lung adenocarcinoma (H(2) = 0.25), T cell lymphoma (H(2) = 0.19), and myeloid malignancies (H(2) = 0.10). Quantitative trait locus mapping identified regions on chromosomes 3, 6, 9, and 15 containing candidate genes associated with lung adenoma, lung carcinoma, and lymphoma susceptibility. This novel mouse model recapitulates many features of human alkylator-associated cancer and supports the hypothesis that susceptibility to this syndrome is influenced by inherited polymorphisms that could be used to make informed clinical treatment decisions.
Nature Medicine | 2015
Britta Will; Thomas O. Vogler; Swathi Rao Narayanagari; Boris Bartholdy; Tihomira I. Todorova; Mariana da Silva Ferreira; Jiahao Chen; Yiting Yu; Jillian Mayer; Laura Barreyro; Luis Carvajal; Daniela Ben Neriah; Michael Roth; Johanna van Oers; Sonja Schaetzlein; Christine McMahon; Winfried Edelmann; Amit Verma; Ulrich Steidl
Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet, moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reductions in PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in a 35% reduction of PU.1 expression, was sufficient to induce myeloid-biased preleukemic stem cells and their subsequent transformation to AML in a DNA mismatch repair–deficient background. AML progression was mediated by inhibition of expression of a PU.1-cooperating transcription factor, Irf8. Notably, we found marked molecular similarities between the disease in these mice and human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor, which commonly occurs in human disease, is sufficient to initiate cancer development, and it provides mechanistic insight into the formation and progression of preleukemic stem cells in AML.
Journal of Biological Chemistry | 2011
Li Zhou; Joanna Opalinska; Davendra Sohal; Yiting Yu; Yongkai Mo; Tushar D. Bhagat; Omar Abdel-Wahab; Melissa Fazzari; Maria E. Figueroa; Cristina Alencar; Jinghang Zhang; Suman Kambhampati; Simrit Parmar; Sangeeta Nischal; Christoph Hueck; Masako Suzuki; Ellen Freidman; Andrea Pellagatti; Jacqueline Boultwood; Ulrich Steidl; Yogen Sauthararajah; Vijay Yajnik; Christine McMahon; Steven D. Gore; Leonidas C. Platanias; Ross L. Levine; Ari Melnick; Amittha Wickrema; John M. Greally; Amit Vermaa
Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors, very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel, aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally, array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes, thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis, potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4, a GTPase regulator located in the commonly deleted 7q31 region, was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets, providing further validation of our findings. Finally, DOCK4 knockdown in primary marrow CD34+ stem cells led to decreased erythroid colony formation and increased apoptosis, thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region.
Pediatric Blood & Cancer | 2011
Kris M. Mahadeo; Lucia R. Wolgast; Christine McMahon; Peter D. Cole
Mastocytosis is primarily limited to the cutaneous variant in pediatric patients. Systemic mastocytosis (SM) has been associated with t(8;21) acute myeloid leukemia (AML) in adults. We provide the first report of a child with t(8;21) AML, diagnosed with asymptomatic SM following four cycles of chemotherapy. Unlike most adults with SM/AML, she was not found to have a c‐KIT (D816V) mutation. SM persisted in the bone marrow after completion of chemotherapy, and her AML relapsed 9 months off‐treatment. Although she achieved a second remission, mastocytosis persists in the marrow. Pediatric patients with t(8;21) AML/SM may represent a high‐risk group despite favorable cytogenetics. Pediatr Blood Cancer 2011; 57: 684–687.
American Journal of Clinical Pathology | 2011
Lucia R. Wolgast; Linda A. Cannizzarro; K. H. Ramesh; Xiaonan Xue; Dan Wang; Pritish K. Bhattacharyya; Jerald Z. Gong; Christine McMahon; Joseph M. Albanese; Jaya Sunkara; Howard Ratech
Spectrins are large, rod-like, multifunctional molecules that participate in maintaining cell structure, signal transmission, and DNA repair. Because little is known about the role of spectrins in normal hematopoiesis and leukemogenesis, we immunohistochemically stained bone marrow biopsy specimens from 81 patients for αI, αII, βI, and βII spectrin isoforms in normal reactive marrow (NRM), myelodysplastic syndrome, myeloproliferative neoplasm, acute myeloid leukemia (AML) with well-characterized cytogenetic abnormalities, acute erythroid leukemia (EryL), and acute megakaryoblastic leukemia (MegL). In NRM, spectrin isoforms were differentially expressed according to cell lineage: αI and βI in erythroid precursors; αII and βII in granulocytes; and βI and βII in megakaryocytes. In contrast, 18 (44%) of 41 AMLs lacked αII spectrin and/or aberrantly expressed βI spectrin (P = .0398; Fisher exact test) and 5 (100%) of 5 EryLs expressed βII spectrin but lacked βI spectrin. The frequent loss and/or gain of spectrin isoforms in AMLs suggests a possible role for spectrin in leukemogenesis.