Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Mézard is active.

Publication


Featured researches published by Christine Mézard.


Journal of Cell Science | 2005

AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis

Liudmila Chelysheva; Stéphanie Diallo; Daniel Vezon; Ghislaine Gendrot; Nathalie Vrielynck; Katia Belcram; Nathalie Rocques; Angustias Márquez-Lema; Anuj M. Bhatt; Christine Horlow; Raphael Mercier; Christine Mézard; Mathilde Grelon

The success of the first meiotic division relies (among other factors) on the formation of bivalents between homologous chromosomes, the monopolar orientation of the sister kinetochores at metaphase I and the maintenance of centromeric cohesion until the onset of anaphase II. The meiotic cohesin subunit, Rec8 has been reported to be one of the key players in these processes, but its precise role in kinetochore orientation is still under debate. By contrast, much less is known about the other non-SMC cohesin subunit, Scc3. We report the identification and the characterisation of AtSCC3, the sole Arabidopsis homologue of Scc3. The detection of AtSCC3 in mitotic cells, the embryo lethality of a null allele Atscc3-2, and the mitotic defects of the weak allele Atscc3-1 suggest that AtSCC3 is required for mitosis. AtSCC3 was also detected in meiotic nuclei as early as interphase, and bound to the chromosome axis from early leptotene through to anaphase I. We show here that both AtREC8 and AtSCC3 are necessary not only to maintain centromere cohesion at anaphase I, but also for the monopolar orientation of the kinetochores during the first meiotic division. We also found that AtREC8 is involved in chromosome axis formation in an AtSPO11-1-independent manner. Finally, we provide evidence for a role of AtSPO11-1 in the stability of the cohesin complex.


Current Biology | 2005

Two Meiotic Crossover Classes Cohabit in Arabidopsis: One Is Dependent on MER3,whereas the Other One Is Not

Raphael Mercier; Sylvie Jolivet; Daniel Vezon; Emelyne Huppe; Liudmila Chelysheva; Maité Giovanni; Fabien Nogué; Marie-Pascale Doutriaux; Christine Horlow; Mathilde Grelon; Christine Mézard

BACKGROUND Crossovers are essential for the completion of meiosis. Recently, two pathways of crossover formation have been identified on the basis of distinct genetic controls. In one pathway, crossover inhibits the occurrence of another such event in a distance-dependent manner. This phenomenon is known as interference. The second kind of crossover is insensitive to interference. The two pathways function independently in budding yeast. Only interference-insensitive crossovers occur in Schizosaccharomyces pombe. In contrast, only interference-sensitive crossovers occur in Caenorabditis elegans. The situation in mammals and plants remains unclear. Mer3 is one of the genes shown to be required for the formation of interference-sensitive crossovers in Saccharomyces cerevisiae. RESULTS To unravel the crossover status in the plant Arabidopsis thaliana, we investigated the role of the A. thaliana MER3 gene through the characterization of a series of allelic mutants. All mer3 mutants showed low levels of fertility and a significant decrease (about 75%) but not a total disappearance of meiotic crossovers, with the number of recombination events initiated in the mutants being similar to that in the wild-type. Genetic analyses showed that the residual crossovers in mer3 mutants did not display interference in one set of adjacent intervals. CONCLUSIONS Mutation in MER3 in Arabidopsis appeared to be specific to recombination events resulting in interference-sensitive crossovers. Thus, MER3 function is conserved from yeast to plants and may exist in other metazoans. Arabidopsis therefore has at least two pathways for crossover formation, one giving rise to interference-sensitive crossover and the other to independently distributed crossovers.


Annual Review of Plant Biology | 2015

The molecular biology of meiosis in plants.

Raphael Mercier; Christine Mézard; Eric Jenczewski; Nicolas Macaisne; Mathilde Grelon

Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.


PLOS Genetics | 2012

Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants

Nataliya E. Yelina; Kyuha Choi; Liudmila Chelysheva; Malcolm Macaulay; Bastiaan de Snoo; Erik Wijnker; Nigel Miller; Jan Drouaud; Mathilde Grelon; Gregory P. Copenhaver; Christine Mézard; Krystyna A. Kelly; Ian R. Henderson

Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.


PLOS Genetics | 2005

Sex-Specific Crossover Distributions and Variations in Interference Level along Arabidopsis thaliana Chromosome 4

Jan Drouaud; Raphael Mercier; Liudmila Chelysheva; Aurélie Bérard; Matthieu Falque; Olivier C. Martin; Vanessa Zanni; Dominique Brunel; Christine Mézard

In many species, sex-related differences in crossover (CO) rates have been described at chromosomal and regional levels. In this study, we determined the CO distribution along the entire Arabidopsis thaliana Chromosome 4 (18 Mb) in male and female meiosis, using high density genetic maps built on large backcross populations (44 markers, >1,300 plants). We observed dramatic differences between male and female map lengths that were calculated as 88 cM and 52 cM, respectively. This difference is remarkably parallel to that between the total synaptonemal complex lengths measured in male and female meiocytes by immunolabeling of ZYP1 (a component of the synaptonemal complex). Moreover, CO landscapes were clearly different: in particular, at both ends of the map, male CO rates were higher (up to 4-fold the mean value), whereas female CO rates were equal or even below the chromosomal average. This unique material gave us the opportunity to perform a detailed analysis of CO interference on Chromosome 4 in male and female meiosis. The number of COs per chromosome and the distances between them clearly departs from randomness. Strikingly, the interference level (measured by coincidence) varied significantly along the chromosome in male meiosis and was correlated to the physical distance between COs. The significance of this finding on the relevance of current CO interference models is discussed.


Science | 2016

A DNA topoisomerase VI–like complex initiates meiotic recombination

Nathalie Vrielynck; Aurélie Chambon; Daniel Vezon; Lucie Pereira; Liudmila Chelysheva; Arnaud De Muyt; Christine Mézard; Claudine Mayer; Mathilde Grelon

A partner protein for meiotic snip Eukaryotes generate germ cells through meiotic recombination. This process initiates through breaks in genomic DNA catalyzed by the SPO11 protein. Vrielynck et al. and Robert et al. discover that SPO11, like topoisomerase VI enzymes, interacts with a partner protein (see the Perspective by Bouuaert and Keeney). This partner is required for proper meiotic recombination and is found in a wide range of eukaryotes, suggesting that it is a universal feature of the essential recombination step. Science, this issue p. 939, 943; see also p. 916 The recombination step in meiosis requires a topoisomerase-like complex of protein subunits. [Also see Perspective by Bouuaert and Keeney] The SPO11 protein catalyzes the formation of meiotic DNA double strand breaks (DSBs) and is homologous to the A subunit of an archaeal topoisomerase (topo VI). Topo VI are heterotetrameric enzymes comprising two A and two B subunits; however, no topo VIB involved in meiotic recombination had been identified. We characterized a structural homolog of the archaeal topo VIB subunit [meiotic topoisomerase VIB–like (MTOPVIB)], which is essential for meiotic DSB formation. It forms a complex with the two Arabidopsis thaliana SPO11 orthologs required for meiotic DSB formation (SPO11-1 and SPO11-2) and is absolutely required for the formation of the SPO11-1/SPO11-2 heterodimer. These findings suggest that the catalytic core complex responsible for meiotic DSB formation in eukaryotes adopts a topo VI–like structure.


Genome dynamics | 2009

Meiotic recombination and crossovers in plants.

Arnaud De Muyt; Raphael Mercier; Christine Mézard; Mathilde Grelon

Efforts have been made in recent years to clarify molecular meiotic processes in a large variety of higher eukaryotes. In plants, such studies have enjoyed a boom in the last years with the use of Arabidopsis thaliana together with maize, rice and tomato as model systems. Owing to direct and reverse genetic screens, an increasing number of genes involved in meiosis have been characterized in plants. In parallel, the improvement of cytological and genetical tools has allowed a precise description of meiotic recombination events. Thus, it appears that meiotic studies in plants are reaching a new stage and can provide new insights into meiotic recombination mechanisms. In this review, we intend to give an overview of these recent advances in the understanding of meiotic recombination in plants.


Genetics | 2007

Patterns of Recombination and MLH1 Foci Density Along Mouse Chromosomes: Modeling Effects of Interference and Obligate Chiasma

Matthieu Falque; Raphael Mercier; Christine Mézard; Dominique de Vienne; Olivier C. Martin

Crossover interference in meiosis is often modeled via stationary renewal processes. Here we consider a new model to incorporate the known biological feature of “obligate chiasma” whereby in most organisms each bivalent almost always has at least one crossover. The initial crossover is modeled as uniformly distributed along the chromosome, and starting from its position, subsequent crossovers are placed with forward and backward stationary renewal processes using a chi-square distribution of intercrossover distances. We used our model as well as the standard chi-square model to simulate the patterns of crossover densities along bivalents or chromatids for those having zero, one, two, or three or more crossovers; indeed, such patterns depend on the number of crossovers. With both models, simulated patterns compare very well to those found experimentally in mice, both for MLH1 foci on bivalents and for crossovers on genetic maps. However, our model provides a better fit to experimental data as compared to the standard chi-square model, particularly regarding the distribution of numbers of crossovers per chromosome. Finally, our model predicts an enhancement of the recombination rate near the extremities, which, however, explains only a part of the pattern observed in mouse.


PLOS Genetics | 2016

Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

Kyuha Choi; Carsten Reinhard; Heïdi Serra; Piotr A. Ziolkowski; Charles J. Underwood; Xiaohui Zhao; Thomas J. Hardcastle; Nataliya E. Yelina; Catherine Griffin; Matthew A. Jackson; Christine Mézard; Gil McVean; Gregory P. Copenhaver; Ian R. Henderson

Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.


Seminars in Cell & Developmental Biology | 2016

A new light on the meiotic DSB catalytic complex

Thomas Robert; Nathalie Vrielynck; Christine Mézard; Bernard de Massy; Mathilde Grelon

Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation.

Collaboration


Dive into the Christine Mézard's collaboration.

Top Co-Authors

Avatar

Mathilde Grelon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Raphael Mercier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jan Drouaud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Liudmila Chelysheva

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Daniel Vezon

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Falque

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnaud De Muyt

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Aurélie Bérard

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge