Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Ortiz is active.

Publication


Featured researches published by Christine Ortiz.


Science | 2008

Bioinspired Structural Materials

Christine Ortiz; Mary C. Boyce

Materials scientists are seeking to create synthetic materials based on the mechanical design principles found in biological materials such as seashell nacre.


ACS Nano | 2009

Electrochemically Controlled Swelling and Mechanical Properties of a Polymer Nanocomposite

D. Schmidt; Fevzi Ç. Cebeci; Z. Ilke Kalcioglu; Samantha G. Wyman; Christine Ortiz; Krystyn J. Van Vliet; Paula T. Hammond

We present the layer-by-layer assembly of an electroactive polymer nanocomposite thin film containing cationic linear poly(ethyleneimine) (LPEI) and 68 vol % anionic Prussian Blue (PB) nanoparticles, which allow for electrochemical control over film thickness and mechanical properties. Electrochemical reduction of the PB doubles the negative charge on the particles, causing an influx of water and ions from solution to maintain electroneutrality in the film; concomitant swelling and increased elastic compliance of the film result. Reversible swelling upon reduction is on the order of 2-10%, as measured via spectroscopic ellipsometry and electrochemical atomic force microscopy. Reversible changes in the Youngs elastic modulus of the hydrated composite film upon reduction are on the order of 50% (from 3.40 to 1.75 GPa) as measured with in situ nanoindentation, and a qualitative increase in viscous contributions to energy dissipation upon redox is indicated by electrochemical quartz crystal microbalance. Electrochemical stimuli maintain a mild operating environment and can be applied rapidly, reversibly, and locally. We maintain that electrochemical control over the swelling and mechanical behavior of polymer nanocomposites could have important implications for responsive coatings of nanoscale devices, including mechanically tunable surfaces to modulate behavior of adherent cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Protection mechanisms of the iron-plated armor of a deep sea hydrothermal vent gastropod

Haimin Yao; Ming Dao; Timothy Imholt; Jamie Huang; Kevin Wheeler; Alejandro Bonilla; S. Suresh; Christine Ortiz

Biological exoskeletons, in particular those with unusually robust and multifunctional properties, hold enormous potential for the development of improved load-bearing and protective engineering materials. Here, we report new materials and mechanical design principles of the iron-plated multilayered structure of the natural armor of Crysomallon squamiferum, a recently discovered gastropod mollusc from the Kairei Indian hydrothermal vent field, which is unlike any other known natural or synthetic engineered armor. We have determined through nanoscale experiments and computational simulations of a predatory attack that the specific combination of different materials, microstructures, interfacial geometries, gradation, and layering are advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads. The structure-property-performance relationships described are expected to be of technological interest for a variety of civilian and defense applications.


Biomacromolecules | 2012

Drastically Lowered Protein Adsorption on Microbicidal Hydrophobic/Hydrophilic Polyelectrolyte Multilayers

Sze Yinn Wong; Lin Han; Ksenia Timachova; Jovana Veselinovic; Nasim Hyder; Christine Ortiz; Alexander M. Klibanov; Paula T. Hammond

Polyelectrolyte multilayer films assembled from a hydrophobic N-alkylated polyethylenimine and a hydrophilic polyacrylate were discovered to exhibit strong antifouling, as well as antimicrobial, activities. Surfaces coated with these layer-by-layer (LbL) films, which range from 6 to 10 bilayers (up to 45 nm in thickness), adsorbed up to 20 times less protein from blood plasma than the uncoated controls. The dependence of the antifouling activity on the nature of the polycation, as well as on assembly conditions and the number of layers in the LbL films, was investigated. Changing the hydrophobicity of the polycation altered the surface composition and the resistance to protein adsorption of the LbL films. Importantly, this resistance was greater for coated surfaces with the polyanion on top; for these films, the average zeta potential pointed to a near neutral surface charge, thus, presumably minimizing their electrostatic interactions with the protein. The film surface exhibited a large contact angle hysteresis, indicating a heterogeneous topology likely due to the existence of hydrophobic-hydrophilic regions on the surface. Scanning electron micrographs of the film surface revealed the existence of nanoscale domains. We hypothesize that the existence of hydrophobic/hydrophilic nanodomains, as well as surface charge neutrality, contributes to the LbL films resistance to protein adsorption.


Journal of The Mechanical Behavior of Biomedical Materials | 2013

Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues

Ashley Browning; Christine Ortiz; Mary C. Boyce

Inspired by the overlapping scales found on teleost fish, a new composite architecture explores the mechanics of materials to accommodate both flexibility and protection. These biological structures consist of overlapping mineralized plates embedded in a compliant tissue to form a natural flexible armor which protects underlying soft tissue and vital organs. Here, the functional performance of such armors is investigated, in which the composition, spatial arrangement, and morphometry of the scales provide locally tailored functionality. Fabricated macroscale prototypes and finite element based micromechanical models are employed to measure mechanical response to blunt and penetrating indentation loading. Deformation mechanisms of scale bending, scale rotation, tissue shear, and tissue constraint were found to govern the ability of the composite to protect the underlying substrate. These deformation mechanisms, the resistance to deformation, and the resulting work of deformation can all be tailored by structural parameters including architectural arrangement (angle of the scales, degree of scale overlap), composition (volume fraction of the scales), morphometry (aspect ratio of the scales), and material properties (tissue modulus and scale modulus). In addition, this network of armor serves to distribute the load of a predatory attack over a large area to mitigate stress concentrations. Mechanical characterization of such layered, segmented structures is fundamental to developing design principles for engineered protective systems and composites.


Biophysical Journal | 2011

Poroelasticity of Cartilage at the Nanoscale

Hadi Tavakoli Nia; Lin Han; Yang Li; Christine Ortiz; Alan J. Grodzinsky

Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex indentation modulus, |E*|, and phase angle, φ, between the force and tip displacement sinusoids, were measured in the frequency range f ~ 0.2-130 Hz at an offset indentation depth of δ(0) ~ 3 μm. The experimentally measured |E*| and φ corresponded well with that predicted by a fibril-reinforced poroelastic model over a three-decade frequency range. The peak frequency of phase angle, f(peak), was observed to scale linearly with the inverse square of the contact distance between probe tip and cartilage, 1/d(2), as predicted by linear poroelasticity theory. The dynamic mechanical properties were observed to be independent of the deformation amplitude in the range δ = 7-50 nm. Hence, these results suggest that poroelasticity was the dominant mechanism underlying the frequency-dependent mechanical behavior observed at these nanoscale deformations. These findings enable ongoing investigations of the nanoscale progression of matrix pathology in tissue-level disease.


Soft Matter | 2010

Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength

Steven W. Cranford; Christine Ortiz; Markus J. Buehler

Advances in nanoscale processing and simulation have led to the capability to directly control the mechanical properties of a material through change of its structural makeup at the nanoscale. A novel class of mechanomutable materials in which mechanical properties can be both tunable and reversible via in situ modifications of a materials nanostructure through stimuli such as pH, light, or electrical fields provides a promising strategy to develop stimuli-responsive polymer-composites. Here we report atomistic-level molecular dynamics (MD) studies, used to investigate the tunable adhesion properties of a polyelectrolyte complex consisting of poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) to elucidate the complexation and electrostatic cross-linking behavior of the constituent polymers of polyelectrolyte multilayer (PEM) systems. To accommodate a link between experimental and simulation results, a rate dependence investigation of the adhesion strength is undertaken to reconcile the time-scale limitations of atomistic simulations. A comparison with Atomic Force Microscopy experiments is provided, showing good agreement with simulation results. To investigate potential mutability of the system, we perform a systematic variation of the percent ionization of each constituent polymer. The ultimate strength of adhesion for the aligned polymers is shown to range from approximately 15 nN to 40 nN for an equivalent pH range of pH 2.5 to pH 10. Theoretical regimes of ionization extend the adhesion strength range from 8 nN to 45 nN, displaying the potential application of tunable, mechanomutable PAA/PAH systems. The findings reported here should be useful in steering experimental efforts in the characterization of polyelectrolyte multilayer composites.


Tissue Engineering Part A | 2008

Nanobiomechanics of Repair Bone Regenerated by Genetically Modified Mesenchymal Stem Cells

Kuangshin Tai; Gadi Pelled; Dima Sheyn; Anna Bershteyn; Lin Han; Ilan Kallai; Yoram Zilberman; Christine Ortiz; Dan Gazit

Genetically modified mesenchymal stem cells (MSCs), overexpressing a BMP gene, have been previously shown to be potent inducers of bone regeneration. However, little was known of the chemical and intrinsic nanomechanical properties of this engineered bone. A previous study utilizing microcomputed tomography, back-scattered electron microscopy, energy-dispersive X-ray, nanoindentation, and atomic force microscopy showed that engineered ectopic bone, although similar in chemical composition and topography, demonstrated an elastic modulus range (14.6-22.1 GPa) that was less than that of the native bone (16.6-38.5 GPa). We hypothesized that these results were obtained due to the specific conditions that exist in an intramuscular ectopic implantation site. Here, we implanted MSCs overexpressing BMP-2 gene in an orthotopic site, a nonunion radial bone defect, in mice. The regenerated bone tissue was analyzed using the same methods previously utilized. The samples revealed high similarity between the engineered and native radii in chemical structure and elemental composition. In contrast to the previous study, nanoindentation data showed that, in general, the native bone exhibited a statistically similar elastic modulus values compared to that of the engineered bone, while the hardness was found to be marginally statistically different at 1000 muN and statistically similar at 7000 muN. We hypothesize that external loading, osteogenic cytokines and osteoprogenitors that exist in a fracture site could enhance the maturation of engineered bone derived from BMP-modified MSCs. Further studies should determine whether longer duration periods postimplantation would lead to increased bone adaptation.


Matrix Biology | 2010

Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes.

Paul W. Kopesky; Hsu-Yi Lee; Eric J. Vanderploeg; John D. Kisiday; David D. Frisbie; Anna Plaas; Christine Ortiz; Alan J. Grodzinsky

Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2-4 month-old foals) and skeletally-mature (2-5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-beta1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-beta1 while BMSCs from both age groups proliferated with TGF-beta1. Young chondrocytes stimulated by TGF-beta1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2-3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2-3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.


Journal of Structural Biology | 2010

Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus).

Juha Song; Steffen Reichert; Ilan Kallai; Dan Gazit; Matthew A. Wund; Mary C. Boyce; Christine Ortiz

In this study, a quantitative investigation of the microstructure and composition of field-caught marine Gasterosteus aculeatus (threespine stickleback) armor is presented, which provides useful phylogenetic information and insights into biomechanical function. Micro-computed tomography (microCT) was employed to create full three-dimensional images of the dorsal spines and basal plate, lateral plates, pelvic girdle and spines and to assess structural and compositional properties such as the spatial distribution of thickness (approximately 100-300 microm), the heterogeneous cross-sectional geometry (centrally thickened), plate-to-plate juncture and overlap (approximately 50% of the plate width), and bone mineral density (634-748 HA/cm(3)). The convolution of plate geometry in conjunction with plate-to-plate overlap allows a relatively constant armor thickness to be maintained throughout the assembly, promoting spatially homogeneous protection and thereby avoiding weakness at the armor unit interconnections. Plate-to-plate junctures act to register and join the plates while permitting compliance in sliding and rotation in selected directions. Mercury porosimetry was used to determine the pore size distribution and volume percent porosity of the lateral plates (20-35 vol.%) and spines (10-15 vol.%). SEM and microCT revealed a porous, sandwich-like cross-section beneficial for bending stiffness and strength at minimum weight. Back-scattered electron microscopy and energy dispersive X-ray analysis were utilized to quantify the weight percent mineral content (58-68%). Scanning electron microscopy and surface profilometry were used to characterize the interior and exterior surface topography (tubercles) of the lateral plates. The results obtained in this study are discussed in the context of mechanical function, performance, fitness, and survivability.

Collaboration


Dive into the Christine Ortiz's collaboration.

Top Co-Authors

Avatar

Alan J. Grodzinsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hadi Tavakoli Nia

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Plaas

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Juha Song

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Kuangshin Tai

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yaning Li

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Eliot H. Frank

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge