Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Plaas is active.

Publication


Featured researches published by Anna Plaas.


Journal of Biological Chemistry | 2000

Binding of a Large Chondroitin Sulfate/Dermatan Sulfate Proteoglycan, Versican, to L-selectin, P-selectin, and CD44

Hiroto Kawashima; Mayumi Hirose; Jun Hirose; Daisuke Nagakubo; Anna Plaas; Masayuki Miyasaka

Here we show that a large chondroitin sulfate proteoglycan, versican, derived from a renal adenocarcinoma cell line ACHN, binds L-selectin, P-selectin, and CD44. The binding was mediated by the interaction of the chondroitin sulfate (CS) chain of versican with the carbohydrate-binding domain of L- and P-selectin and CD44. The binding of versican to L- and P-selectin was inhibited by CS B, CS E, and heparan sulfate (HS) but not by any other glycosaminoglycans tested. On the other hand, the binding to CD44 was inhibited by hyaluronic acid, chondroitin (CH), CS A, CS B, CS C, CS D, and CS E but not by HS or keratan sulfate. A cross-blocking study indicated that L- and P-selectin recognize close or overlapping sites on versican, whereas CD44 recognizes separate sites. We also show that soluble L- and P-selectin directly bind to immobilized CS B, CS E, and HS and that soluble CD44 directly binds to immobilized hyaluronic acid, CH, and all the CS chains examined. Consistent with these results, structural analysis showed that versican is modified with at least CS B and CS C. Thus, proteoglycans sufficiently modified with the appropriate glycosaminoglycans should be able to bind L-selectin, P-selectin, and/or CD44.


Archives of Biochemistry and Biophysics | 1991

Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants

Robert L.Y. Sah; Joe-Yuan H. Doong; Alan J. Grodzinsky; Anna Plaas; John D. Sandy

The effects of mechanical compression of calf cartilage explants on the catabolism and loss into the medium of proteoglycans and proteins radiolabeled with [35S]sulfate and [3H]proline were examined. A single 2- or 12-h compression of 3-mm diameter cartilage disks from a thickness of 1.25 to 0.50 mm, or slow cyclic compression (2 h on/2 h off) from 1.25 mm to 1.00, 0.75, or 0.50 mm for 24 h led to transient alterations and/or sustained increases in loss of radiolabeled macromolecules. The effects of imposing or removing loads were consistent with several compression-induced physical mediators including fluid flow, diffusion, and matrix disruption. Cyclic compression induced convective fluid flow and enhanced the loss of 35S- and 3H-labeled macromolecules from tissue into medium. In contrast, prolonged static compression induced matrix consolidation and appeared to hinder the diffusional transport and loss of 35S- and 3H-labeled macromolecules. Since high amplitude cyclic compression led to a sustained increase in the rate of loss of 3H- and 35S-labeled macromolecules that was accompanied by an increase in the rate of loss of [3H]hydroxyproline residues and an increase in tissue hydration, such compression may have caused disruption of the collagen meshwork. The 35S-labeled proteoglycans lost during such cyclic compression were of smaller average size than those from controls, but contained a similarly low proportion (approximately 15%) that could form aggregates with excess hyaluronate and link protein. The size distribution and aggregability of the remaining tissue proteoglycans and 35S-labeled proteoglycans were not markedly affected. The loss of tissue proteoglycan paralleled the loss of 35S-labeled macromolecules. This study provides a framework for elucidating the biophysical mechanisms involved in the redistribution, catabolism, and loss of macromolecules during cartilage compression.


Journal of Biological Chemistry | 1998

Glycosaminoglycan Sulfation in Human Osteoarthritis DISEASE-RELATED ALTERATIONS AT THE NON-REDUCING TERMINI OF CHONDROITIN AND DERMATAN SULFATE

Anna Plaas; Leigh A. West; Shirley Wong-Palms; Fred R. T. Nelson

Chondroitin lyase products of aggrecan and small proteoglycans from normal and osteoarthritic cartilages were analyzed for chain internal Δdisaccharides and terminal mono- or disaccharides. Chondroitin and dermatan sulfate chains from arthritic cartilages were of essentially normal size and internal sulfation but had significantly altered sulfation of the terminal residues. Whereas in normal cartilage, ∼60% of terminal GalNAc4S was 4,6-disulfated, it was reduced to ∼30% in osteoarthritic cartilage. This is most likely due to a lower terminal GalNAc4,6S-disulfotransferase activity and reveals that metabolic changes in osteoarthritis can affect this distinct sulfation step during chondroitin and dermatan sulfate synthesis. GlcAβ1,3GalNAc6S-, the mimotope for antibody 3B3(−), was present on ∼8 and ∼10% of chains from normal and osteoarthritic cartilages, respectively. 3B3(−) assayed by immunodot blot was within the normal range for most osteoarthritic samples, with only 5 of 24 displaying elevated reactivity. This resulted not from a higher content of mimotope, but possibly from other structural changes in the proteoglycan that increase mimotope reactivity. In summary, chemical determination of sulfation isomers at the non-reducing termini of chondroitin and dermatan sulfate provides a reliable assay for monitoring proteoglycan metabolism not only during normal growth of cartilage but also during remodeling of cartilage in osteoarthritis.


Journal of Orthopaedic Research | 2001

Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle

Kathleen A. Derwin; Louis J. Soslowsky; James H. Kimura; Anna Plaas

The isolated mouse tail tendon fascicle, a functional and homogenous volume of tendon extracellular matrix, was utilized as an experimental system to examine the structure–function relationships in tendon. Our previous work using this model system demonstrated relationships between mean collagen fibril diameter and fascicle mechanical properties in isolated tail tendon fascicles from three different groups of mice (3‐week and 8‐week control and 8‐week Mov13 transgenic) K.A. Derwin, L.J. Soslowsky, J. Biomech. Eng. 121 (1999) 598–604. These groups of mice were chosen to obtain tendon tissues with varying collagen fibril structure and/or biochemistry, such that relationships with material properties could be investigated. To further investigate the molecular details of matrix composition and organization underlying tendon function, we report now on the preparation, characterization, and quantitation of fascicle PGs (proteoglycans) from these three groups. The chondroitin sulfate/dermatan sulfate (CS/DS)‐substituted PGs, biglycan and decorin, which are the abundant proteoglycans of whole tendons, were also shown to be the predominant PGs in isolated fascicles. Furthermore, similar to the postnatal maturation changes in matrix composition previously reported for whole tendons, isolated fascicles from 8‐week mice had lower CS/DS PG contents (both decorin and biglycan) and a higher collagen content than 3‐week mice. In addition, CS/DS chains substituted on PGs from 8‐week fascicles were shorter (based on a number average) and richer in disulfated disaccharide residues than chains from 3‐week mice. Fascicles from 8‐week Mov13 transgenic mice were found to contain similar amounts of total collagen and total CS/DS PG as age‐matched controls, and CS/DS chain lengths and sulfation also appeared normal. However, both decorin and biglycan in Mov13 tissue migrated slightly faster on sodium dodecyl sulfate polyacrylamide gel electorphoresis (SDS‐PAGE) than the corresponding species from 8‐week control, and biglycan from the 8‐week Mov13 fascicles appeared to migrate as a more polydisperse band, suggesting the presence of a unique PG population in the transgenic tissue. These observations, together with our biomechanical data [Derwin and Soslowsky, 1999] suggest that compensatory pathways of extracellular matrix assembly and maturation may exist, and that tissue mechanical properties may not be simply determined by the contents of individual matrix components or collagen fibril size.


Arthritis & Rheumatism | 2009

Mechanical injury potentiates proteoglycan catabolism induced by interleukin‐6 with soluble interleukin‐6 receptor and tumor necrosis factor α in immature bovine and adult human articular cartilage

Yihong Sui; Jennifer H. Lee; Michael A. DiMicco; Eric J. Vanderploeg; Simon M. Blake; Han-Hwa Hung; Anna Plaas; Ian E. James; Xiao-Yu Song; Michael W. Lark; Alan J. Grodzinsky

OBJECTIVE Traumatic joint injury can damage cartilage and release inflammatory cytokines from adjacent joint tissue. The present study was undertaken to study the combined effects of compression injury, tumor necrosis factor alpha (TNFalpha), and interleukin-6 (IL-6) and its soluble receptor (sIL-6R) on immature bovine and adult human knee and ankle cartilage, using an in vitro model, and to test the hypothesis that endogenous IL-6 plays a role in proteoglycan loss caused by a combination of injury and TNFalpha. METHODS Injured or uninjured cartilage disks were incubated with or without TNFalpha and/or IL-6/sIL-6R. Additional samples were preincubated with an IL-6-blocking antibody Fab fragment and subjected to injury and TNFalpha treatment. Treatment effects were assessed by histologic analysis, measurement of glycosaminoglycan (GAG) loss, Western blot to determine proteoglycan degradation, zymography, radiolabeling to determine chondrocyte biosynthesis, and Western blot and enzyme-linked immunosorbent assay to determine chondrocyte production of IL-6. RESULTS In bovine cartilage samples, injury combined with TNFalpha and IL-6/sIL-6R exposure caused the most severe GAG loss. Findings in human knee and ankle cartilage were strikingly similar to those in bovine samples, although in human ankle tissue, the GAG loss was less severe than that observed in human knee tissue. Without exogenous IL-6/sIL-6R, injury plus TNFalpha exposure up-regulated chondrocyte production of IL-6, but incubation with the IL-6-blocking Fab significantly reduced proteoglycan degradation. CONCLUSION Our findings indicate that mechanical injury potentiates the catabolic effects of TNFalpha and IL-6/sIL-6R in causing proteoglycan degradation in human and bovine cartilage. The temporal and spatial evolution of degradation suggests the importance of transport of biomolecules, which may be altered by overload injury. The catabolic effects of injury plus TNFalpha appeared partly due to endogenous IL-6, since GAG loss was partially abrogated by an IL-6-blocking Fab.


Osteoarthritis and Cartilage | 2010

The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination.

Christopher G. Jackson; Anna Plaas; John D. Sandy; Crystal Hua; Samantha Kim-Rolands; Jamie G. Barnhill; Crystal L. Harris; Daniel O. Clegg

OBJECTIVE As part of the National Institutes of Health (NIH)-sponsored Glucosamine/Chondroitin sulfate Arthritis Intervention Trial (GAIT) our objective here was to examine (1) the pharmacokinetics (PK) of glucosamine (GlcN) and chondroitin sulfate (CS) when taken separately or in combination as a single dose in normal individuals (n=29) and (2) the PK of GlcN and CS when taken as a single dose after 3 months daily dosing with GlcN, CS or GlcN+CS, in patients with symptomatic knee pain (n=28). METHODS The concentration of GlcN in the circulation was determined by established fluorophore-assisted carbohydrate electrophoresis (FACE) methods. The hydrodynamic size and disaccharide composition of CS chains in the circulation and dosage samples was determined by Superose 6 chromatography and FACE. RESULTS We show that circulating levels of CS in human plasma are about 20 microg/ml. Most significantly, the endogenous concentration and CS disaccharide composition were not detectably altered by ingestion of CS, when the CS was taken alone or in combination with GlcN. On the other hand, the Cmax (single-dose study) and AUC values (multiple-dose study) for ingested GlcN were significantly reduced by combination dosing with CS, relative to GlcN dosing alone. CONCLUSIONS We conclude that pain relief perceived following ingestion of CS probably does not depend on simultaneous or prior intake of GlcN. Further, such effects on joint pain, if present, probably do not result from ingested CS reaching the joint space but may result from changes in cellular activities in the gut lining or in the liver, where concentrations of ingested CS, or its breakdown products, could be substantially elevated following oral ingestion. Moreover, since combined dosing of GlcN with CS was found to reduce the plasma levels seen with GlcN dosing alone, any improved pain relief by combination dosing cannot be explained by higher circulating concentrations of GlcN.


Biochimica et Biophysica Acta | 2009

Disulfide-bonded multimers of proteoglycan 4 (PRG4) are present in normal synovial fluids ☆

Tannin A. Schmidt; Anna Plaas; John D. Sandy

BACKGROUND The proteoglycan 4 (PRG4) gene encodes for a mucin-like O-linked glycosylated protein with several names, including lubricin and superficial zone protein. The objective of this study was to analyze PRG4 in normal bovine calf and steer synovial fluids for evidence of native multimers formed by intermolecular disulfide bonds. METHODS A combination of mucin biochemical techniques, with antibodies to both terminal domains and the mucin-like domain of PRG4, were used for analyses. RESULTS Multimers were present in both calf and steer fluids, and reduction and alkylation converts the multimeric complex (likely dimeric) into monomeric subunits. Tandem mass spectrometry analyses supported the Western blot data and identified PRG4 in the reduced approximately 345 kDa monomeric form. Interestingly, approximately 70 kDa fragments released upon reduction contained peptides from both the N and C terminal regions, which most likely represent fragments of a sparsely glycosylated PRG4 population that are disulfide-linked to extensively glycosylated, intact monomers. CONCLUSIONS The analyses described here have demonstrated the presence of native disulfide-bonded multimers of PRG4 in normal bovine synovial fluids. GENERAL SIGNIFICANCE These structures are similar to those described for multimerization of mucins in general. Such multimerization and proteolytic cleavage of PRG4 may have functional significance in joint health and disease.


Journal of Orthopaedic Research | 2011

Knockout of ADAMTS5 does not eliminate cartilage aggrecanase activity but abrogates joint fibrosis and promotes cartilage aggrecan deposition in murine osteoarthritis models

Jun Li; Wendy Anemaet; Michael A. Diaz; Samuel Buchanan; Micky D. Tortorella; Anne-Marie Malfait; John D. Sandy; Anna Plaas

To investigate the role of ADAMTS5 in murine osteoarthritis (OA), resulting from destabilization of the medial meniscus (DMM model) or from TGFb1 injection and enforced uphill treadmill running (TTR model). Wild‐type (WT) and ADAMTS5−/− mice were subjected to either DMM or TTR and joints were evaluated for meniscal damage, cartilage changes, and fibrotic ingrowths from the joint margins. Cartilage lesions were quantified on an 8‐point scoring system. Cartilage chondroitin sulfate (CS) content was evaluated by SafraninO staining and by quantitative electrophoresis (FACE). The abundance of aggrecan, versican, and specific aggrecanase‐generated products was determined by Western analysis. Joint changes were similar for WT mice taken through either the DMM or the TTR model. ADAMTS5 ablation essentially eliminated cartilage erosion and fibrous overgrowth in both models. In the TTR model, ADAMTS5 ablation did not eliminate aggrecanase activity from the articular cartilage but blocked fibrosis and resulted in the accumulation of aggrecan in the articular cartilage. The cartilage protection provided by ADAMTS5 ablation in the mouse does not result from prevention of aggrecanase activity per se, but it appears to be due to a blockade of joint tissue fibrosis and a concomitant increase in cartilage aggrecan content.


Matrix Biology | 2010

Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes.

Paul W. Kopesky; Hsu-Yi Lee; Eric J. Vanderploeg; John D. Kisiday; David D. Frisbie; Anna Plaas; Christine Ortiz; Alan J. Grodzinsky

Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2-4 month-old foals) and skeletally-mature (2-5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-beta1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-beta1 while BMSCs from both age groups proliferated with TGF-beta1. Young chondrocytes stimulated by TGF-beta1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2-3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2-3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.


Journal of Biological Chemistry | 2011

Adamts5 Deletion Blocks Murine Dermal Repair through CD44-mediated Aggrecan Accumulation and Modulation of Transforming Growth Factor β1 (TGFβ1) Signaling

Jennifer Velasco; Jun Li; Luisa DiPietro; Mary Ann Stepp; John D. Sandy; Anna Plaas

ADAMTS5 has been implicated in the degradation of cartilage aggrecan in human osteoarthritis. Here, we describe a novel role for the enzyme in the regulation of TGFβ1 signaling in dermal fibroblasts both in vivo and in vitro. Adamts5−/− mice, generated by deletion of exon 2, exhibit impaired contraction and dermal collagen deposition in an excisional wound healing model. This was accompanied by accumulation in the dermal layer of cell aggregates and fibroblastic cells surrounded by a pericellular matrix enriched in full-length aggrecan. Adamts5−/− wounds exhibit low expression (relative to wild type) of collagen type I and type III but show a persistently elevated expression of tgfbRII and alk1. Aggrecan deposition and impaired dermal repair in Adamts5−/− mice are both dependent on CD44, and Cd44−/−/Adamts5−/− mice display robust activation of TGFβ receptor II and collagen type III expression and the dermal regeneration seen in WT mice. TGFβ1 treatment of newborn fibroblasts from wild type mice results in Smad2/3 phosphorylation, whereas cells from Adamts5−/− mice phosphorylate Smad1/5/8. The altered TGFβ1 response in the Adamts5−/− cells is dependent on the presence of aggrecan and expression of CD44, because Cd44−/−/Adamts5−/− cells respond like WT cells. We propose that ADAMTS5 deficiency in fibrous tissues results in a poor repair response due to the accumulation of aggrecan in the pericellular matrix of fibroblast progenitor cells, which prevents their transition to mature fibroblasts. Thus, the capacity of ADAMTS5 to modulate critical tissue repair signaling events suggests a unique role for this enzyme, which sets it apart from other members of the ADAMTS family of proteases.

Collaboration


Dive into the Anna Plaas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Grodzinsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christine Ortiz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge O. Galante

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Gorski

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shirley Wong-Palms

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge