Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Perreau is active.

Publication


Featured researches published by Christine Perreau.


Theriogenology | 2002

Effect of follicular size on meiotic and developmental competence of porcine oocytes

R. Marchal; Céline Vigneron; Christine Perreau; A. Bali-Papp; Pascal Mermillod

In several species, the developmental competence of the oocyte is acquired progressively during late follicular growth, after the acquisition of the competence to resume and complete meiosis. In the pig, full meiotic competence of the oocyte is reached in ovarian follicles with a diameter of 3 mm or more. However, there is no information about developmental competence acquisition. We analyzed the ability of oocytes from three foll icular size classes to resume and complete meiosis, to be fertilized, and to develop in vitro to the blastocyst stage. A total of 941 follicles were dissected from slaughterhouse gilt ovaries and classified as small (<3 mm, n = 330), medium (3-5 mm, n = 373), or large (>5 mm, n = 238). The cumulus-oocyte complexes recovered from these follicles were submitted to in vitro maturation for 44 h in TCM199 supplemented with 10 ng/ml EGF, 400 ng/ml pFSH and 570 microM cysteamine; in vitro fertilized for 18 h in mTBM with 10(5) frozen-thawed percoll-selected sperms/ml; and developed for 7 days in mSOF. Samples of oocytes or presumptive zygotes were fixed and stained at the end of maturation and fertilization. Groups of oocytes were cultured for 3 h in the presence of 35S-methionine before or after maturation for SDS-PAGE analysis of protein neosynthesis. More oocytes originating from medium and large follicles were competent for maturation than oocytes from small follicles (77 and 86% of metaphase II, respectively, versus 44%, P < 0.05). More oocytes from medium and large follicles werepenetratedby spermatozoa during in vitro fertilization, resulting in significantly more oocytes presenting two or more pronuclei at the end of fertilization (73 and 77% for medium and large follicles, respectively, versus 53% for small follicles, P < 0.05). More oocytes from medium and large follicles developed to the blastocyst stage (14 and 23%, respectively) than those from small follicles (3%, P < 0.05), even if the development rates were corrected by the maturation or fertilization rates. It is concluded that a high proportion of oocytes harvested from follicles of less than 3 mm in the pig are not fully competent for meiosis and are cytoplasmically deficient for development.


BMC Developmental Biology | 2007

Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo

Aurore Thélie; Pascal Papillier; Sophie Pennetier; Christine Perreau; Juan Martin Traverso; Svetlana Uzbekova; Pascal Mermillod; Catherine Joly; P. Humblot; Rozenn Dalbiès-Tran

BackgroundIn bovine maturing oocytes and cleavage stage embryos, gene expression is mostly controlled at the post-transcriptional level, through degradation and deadenylation/polyadenylation. We have investigated how post transcriptional control of maternal transcripts was affected during in vitro and in vivo maturation, as a model of differential developmental competence.ResultsUsing real time PCR, we have analyzed variation of maternal transcripts, in terms of abundance and polyadenylation, during in vitro or in vivo oocyte maturation and in vitro embryo development. Four genes are characterized here for the first time in bovine: ring finger protein 18 (RNF18) and breast cancer anti-estrogen resistance 4 (BCAR4), whose oocyte preferential expression was not previously reported in any species, as well as Maternal embryonic leucine zipper kinase (MELK) and STELLA. We included three known oocyte marker genes (Maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), NACHT, leucine rich repeat and PYD containing 9 (NALP9)). In addition, we selected transcripts previously identified as differentially regulated during maturation, peroxiredoxin 1 and 2 (PRDX1, PRDX2), inhibitor of DNA binding 2 and 3 (ID2, ID3), cyclin B1 (CCNB1), cell division cycle 2 (CDC2), as well as Aurora A (AURKA). Most transcripts underwent a moderate degradation during maturation. But they displayed sharply contrasted deadenylation patterns that account for variations observed previously by DNA array and correlated with the presence of a putative cytoplasmic polyadenylation element in their 3 untranslated region. Similar variations in abundance and polyadenylation status were observed during in vitro maturation or in vivo maturation, except for PRDX1, that appears as a marker of in vivo maturation. Throughout in vitro development, oocyte restricted transcripts were progressively degraded until the morula stage, except for MELK ; and the corresponding genes remained silent after major embryonic genome activation.ConclusionAltogether, our data emphasize the extent of post-transcriptional regulation during oocyte maturation. They do not evidence a general alteration of this phenomenon after in vitro maturation as compared to in vivo maturation, but indicate that some individual messenger RNA can be affected.


Biology of Reproduction | 2008

Spatio-Temporal Expression Patterns of Aurora Kinases A, B, and C and Cytoplasmic Polyadenylation-Element-Binding Protein in Bovine Oocytes During Meiotic Maturation

Svetlana Uzbekova; Yannick Arlot-Bonnemains; Joëlle Dupont; Rozenn Dalbiès-Tran; Pascal Papillier; Sophie Pennetier; Aurore Thélie; Christine Perreau; Pascal Mermillod; Claude Prigent; Rustem Uzbekov

Abstract Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases—localized in centrosomes, chromosomes, and midbody—regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes—AURKA, AURKB, and AURKC—in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.


Reproduction in Domestic Animals | 2008

Factors Affecting Oocyte Quality: Who is Driving the Follicle?

Pascal Mermillod; Rozenn Dalbiès-Tran; Svetlana Uzbekova; Aurore Thélie; Traverso Jm; Christine Perreau; Pascal Papillier; Philippe Monget

Mammalian ovaries contain a large stock of oocytes enclosed in primordial follicles. Ovarian cyclic activity induces some of these follicles to initiate growth towards a possible ovulation. However, most of these follicles terminate their growth at any moment and degenerate through atresia. In growing follicles, only a subset of oocytes are capable to support meiosis, fertilization and early embryo development to the blastocyst stage, as shown through embryo in vitro production experiments. This proportion of competent oocytes is increasing along with follicular size. Growing lines of evidence suggest that oocyte competence relies on the storage of gene products (messenger RNA or protein) that will be determinant to support early stages of embryo development, before full activation of embryonic genome. Given these facts, the question is: are these gene products stored in oocytes during late folliculogenesis, allowing an increasing proportion of them to become competent? Alternatively, these transcripts may be stored during early folliculogenesis as the oocyte grows and displays high transcription activity. Several arguments support this latter hypothesis and are discussed in this review: (i) many attempts at prolonged culture of oocytes from antral follicles have failed to increase developmental competence, suggesting that developmental competence may be acquired before antral formation; (ii) the recent discovery of oocyte secreted factors and of their ability to regulate many parameters of surrounding somatic cells, possibly influencing the fate of follicles between ovulation or atresia, suggests a central role of oocyte quality in the success of folliculogenesis. Finally, in addition to their role in interfollicular regulation of ovulation rate, late folliculogenesis regulation and atresia could also be seen as a selective process aimed at the elimination through follicular atresia of oocytes that did not succeed to store proper gene products set during their growth.


Theriogenology | 2011

Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion

Mohamad Salhab; Lucie Tosca; Cédric Cabau; Pascal Papillier; Christine Perreau; Joëlle Dupont; Pascal Mermillod; Svetlana Uzbekova

In vitro maturation of oocytes is a crucial step in assisted reproductive technologies in cattle; however, the molecular mechanisms of cumulus contribution to oocyte developmental potential require more investigation. Based on transcriptomic data, we studied by using real-time RT-PCR and western blot in bovine cumulus cells, the kinetics of expression of several candidate genes involved in oxidative stress response, apoptosis, steroid metabolism and signal transmission throughout IVM. Phosphorylations of the components of the main signaling pathways were also analyzed. In addition, IVM was performed in different maturation mediums which influenced the cumulus apoptosis, progesterone secretion and oocyte developmental competence. Glutathione-S-transferase A1 (GSTA1) transcript and protein abundance significantly decreased throughout IVM progression. Similarly, transcript levels of FSH receptor and aromatase (CYP19A1) and protein levels of three steroidogenic enzymes (steroidogenic acute regulatory protein, cytochrome P450scc and 3-beta-hydroxysteroid dehydrogenase) decreased along with progression of maturation and especially since 10 hours of IVM. Expression of progesterone receptor (PGR) and clusterin (CLU) mRNA and phosphorylations of protein kinases AKT, MAPK P38 and SMAD2 were particularly increased at 10 hours of IVM. This expression pattern supposed the role of these factors during oocyte metaphase-I check point of meiosis. Levels of CLU, GSTA1 and FSHR transcripts were higher in 199 basic hormone-free medium as compared to the medium 199EM, enriched in gonadotropins and growth factors, in which we recorded the higher developmental rate and progesterone secretion. Higher phosphorylation levels of SMAD2, AKT and MAP kinase JNK1, but not of MAP kinases ERK1/ERK2 or P38, was positively correlated with oocyte developmental competence and progesterone secretion and negatively correlated with cumulus apoptosis rate. These factors and signaling pathways in cumulus cells are potentially involved in controlling different stages of oocyte nuclear maturation and acquirement of its developmental potential.


Prostaglandins & Other Lipid Mediators | 2010

Effect of PUFA on embryo cryoresistance, gene expression and AMPKα phosphorylation in IVF-derived bovine embryos

Abdulrahman Al Darwich; Christine Perreau; Marie Hélène Petit; Pascal Papillier; Joëlle Dupont; Daniel Guillaume; Pascal Mermillod; Florence Guignot

The objectives of the present study were to evaluate the effect of conjugated linoleic acid (CLA t10, c12, C18:2), linolenic acid (C18:3) and docosahexaenoic acid (DHA, C22:6) supplementation on in vitro bovine embryo development, embryo survival after cryopreservation, gene expression and AMPKalpha phosphorylation. Control groups with modified synthetic oviduct fluid (mSOF)+/-100microM beta-mercaptoethanol (beta-ME) were performed. The effects of co-culture with bovine oviduct epithelial cell (Boec) monolayers, serum supplementation and embryo development in the ewe oviduct, on gene expression were also examined. Experiments 1 and 2: a lower d 7 embryo survival was found with 100microM C22:6 and 100microM C18:2 supplementation compared to 1microM C22:6 and 100microM beta-ME supplementation (P<0.05). C18:3 supplementation had no effect on d 7 embryo survival, but 100microM C18:3 increased d 8 embryo survival compared to 100microM beta-ME supplementation (P<0.05). Experiments 3 and 4: stearoyl-CoA desaturase 1 (SCD1) and sterol regulatory element-binding transcription factor 1 (SREBP1) mRNA decreased after 10microM C22:6 supplementation compared to all other supplementations (P<0.05). A lower fatty acid desaturase 2 (FADS2) transcript level was found with 100microM C18:2, 10microM C22:6 and 10microM C18:3 supplementations compared to groups without fatty acid supplementation (P<0.05). Acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), adipose differentiation-related protein (ADRP), acyl-CoA synthetase long-chain family member 1 (ACSL1), diacylglycerol O-acyltransferase 1 (DGAT1), carnitin palmitoyltransferase-II (CPT-II) mRNAs expression and AMPKalpha phosphorylation were not modified with PUFA supplementation. Experiment 5: SCD1 and FAS mRNA decrease in Boec group compared to serum supplementation, as SCD1 mRNA in ewe oviduct group (P<0.05). In conclusion, this study showed that a PUFA supplementation with C18:2, C18:3 or C22:6 in bovine culture development for 6 days and co-culture with Boec down-regulate mRNA expression of proteins involved in lipid metabolism in d 7-8 embryo (SCD1 and FADS2 desaturases), probably through SREBP1 mRNA regulation after 10microM C22:6 supplementation, indicating a modification of saturated/unsaturated fatty acid balance in bovine blastocyst.


Reproduction | 2009

Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: possible involvement in meiosis during in vitro maturation.

Svetlana Uzbekova; Mohamad Salhab; Christine Perreau; Pascal Mermillod; Joëlle Dupont

Glycogen synthase kinase 3 (GSK3) regulates cellular metabolism and cell cycle via different signalling pathways. In response to insulin and growth factors GSK3 is serine-phosphorylated and inactivated. We analysed GSK3B expression and activation in bovine cumulus cells (CC) and oocytes at different meiotic stages in vitro in parallel with MAP kinases ERK (MAPK3/MAPK1) and p38 (MAPK14). GSK3B localised to cytoplasm in granulosa cells and in oocytes throughout folliculogenesis. In mature metaphase-II (MII) oocytes, GSK3B was concentrated to the region of midzone between the oocyte and the first polar body, as well as active phospho-Thr Aurora A kinase (AURKA). During in vitro maturation (IVM), in oocytes, phospho-Ser(9)-GSK3B level increased as well as phospho-MAPK3/MAPK1, while phospho-MAPK14 decreased. In CC, phospho-MAPK14 increased upon germinal vesicle breakdown (GVBD)/metaphase-I (MI) and then decreased during transition to MII. Administration of inhibitors of GSK3 activity (lithium chloride or 2Z,3E -6-bromoindirubin-3-oxime) rapidly increased phospho-Ser(9)-GSK3B, and led to transient decrease of phospho-MAPK3/MAPK1 and to durable enhancing of phospho-MAPK14 in granulosa primary cell culture. GSK3 inhibitors during IVM diminished cumulus expansion and delayed meiotic progression. In cumulus, phospho-MAPK14 level was significantly higher in the presence of inhibitors, comparing with control, through the time of MI/MII transition. In oocytes, phospho-GSK3B was increased and phospho-MAPK3/MAPK1 was decreased before GVBD and oocytes were mainly arrested at MI. Therefore, GSK3B might regulate oocyte meiosis, notably MI/MII transition being the part of MAPK3/1 and MAPK14 pathways in oocytes and CC. GSK3B might be also involved in the local activation of AURKA that controls this transition.


Molecular Reproduction and Development | 2009

Regulation of bovine oocyte‐specific transcripts during in vitro oocyte maturation and after maternal–embryonic transition analyzed using a transcriptomic approach

Aurore Thélie; Pascal Papillier; Christine Perreau; Svetlana Uzbekova; Christelle Hennequet-Antier; Rozenn Dalbiès-Tran

Oocyte/embryo genomics in mammals faces specific challenges due to limited biological material, to the comparison of models with different total RNA contents, and to expression of a specific set of genes often absent from commercially available microarrays. Here, we report experimental validation of a RNA amplification protocol for bovine oocytes and blastocysts. Using real‐time PCR, we have confirmed that the profile of both abundant and scarce polyadenylated transcripts was conserved after RNA amplification. Next, amplified probes generated from immature oocytes, in vitro matured oocytes, and in vitro produced hatched blastocysts were hybridized onto a macroarray that included oocyte‐specific genes. Following an original approach, we have compared two normalization procedures, based on the median signal or an exogenous standard. We have evidenced the expected difference in sets of differential genes depending on the normalization procedure. Using a 1.5‐fold threshold, no transcript was found to be upregulated when data were normalized to an exogenous standard, which reflects the absence of transcription during in vitro oocyte maturation. In blastocysts, the majority of oocyte‐preferentially expressed genes were not activated, as previously observed in mouse. Finally, microarray data were validated by real‐time PCR on a random subset of genes. Our study sheds new light on and complements previous transcriptomic analyses of bovine oocyte to embryo transition using commercial platforms. Mol. Reprod. Dev. 76: 773–782, 2009.


Theriogenology | 2014

In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up–derived oocytes have different kinetics and requirements regarding maturation media

Joanna Maria Gonçalves Souza-Fabjan; Yann Locatelli; Nicolas Duffard; Emilie Corbin; Jean-Luc Touzé; Christine Perreau; Jean-François Beckers; V. J. F. Freitas; Pascal Mermillod

A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes.


Reproduction, Fertility and Development | 2010

Thymosins β-4 and β-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation

Mohamad Salhab; Pascal Papillier; Christine Perreau; Catherine Guyader-Joly; Joëlle Dupont; Pascal Mermillod; Svetlana Uzbekova

β-Thymosins are small proteins that regulate the actin cytoskeleton and are involved in cell motility, differentiation, the induction of metalloproteinases, in anti-inflammatory processes and tumourigenesis. However, their roles in the ovary have not yet been elucidated. Using transcriptomics and real time reverse transcription-polymerase chain reaction validation, the present study demonstrates that thymosin β-4 (TMSB4) and thymosin β-10 (TMSB10) are upregulated in bovine cumulus cells (CCs) during in vitro maturation of cumulus-oocyte complexes (COCs) in parallel with an increase in mRNA expression of HAS2, COX2 and PGR genes. Using immunocytochemistry, both proteins were found to be localised mainly in granulosa cells, CCs and oocytes, in both the cytoplasm and nucleus, as well as being colocalised with F-actin stress fibres in CCs. Using different maturation mediums, we showed that the expression of TMSB10, but not TMSB4, was positively correlated with COC expansion and progesterone secretion and negatively correlated with apoptosis. Immunofluorescence, coupled with terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL), demonstrated the absence of TMSB4 and/or TMSB10 in apoptotic cells. TMSB10 expression was higher in COCs matured in vivo than in vitro, and differences related to the age of the animal were observed. TMSB4 and/or TMSB10 expression was unchanged, whereas HAS2 overexpressed in CCs from oocytes that developed to the blastocyst stage in vitro compared with those that did not. Thus, TMSB4 and/or TMSB10 ovarian expression patterns suggest that these two thymosins may be involved in cumulus modifications during maturation.

Collaboration


Dive into the Christine Perreau's collaboration.

Top Co-Authors

Avatar

Pascal Mermillod

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Svetlana Uzbekova

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Pascal Papillier

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Rozenn Dalbiès-Tran

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Aurore Thélie

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Florence Guignot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joëlle Dupont

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Amanda Cordova

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Fabrice Reigner

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Guy Duchamp

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge