Svetlana Uzbekova
François Rabelais University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana Uzbekova.
Biology of Reproduction | 2004
Sophie Pennetier; Svetlana Uzbekova; Christine Perreau; Pascal Papillier; Pascal Mermillod; Rozenn Dalbiès-Tran
Abstract We have cloned the bovine homologue of Mater (maternal antigen that embryos require) cDNA, potentially the first germ cell-specific maternal-effect gene in this species. The 3297 base-pair longest open reading frame encodes a putative protein of 1098 amino acids with a domain organization similar to its human counterpart. By reverse transcription coupled to polymerase chain reaction, we have analyzed the spatiotemporal expression of MATER, along with other potential markers of germ cells or oocytes: ZAR1 (zygotic arrest 1), GDF9 (growth and differentiation factor 9), BMP15 (bone morphogenetic protein 15), and VASA. In agreement with a preferential oocyte origin, MATER, ZAR1, GDF9, and BMP15 transcripts were detected in the oocyte itself at a much higher level than in the gonads, while no significant expression was detected in our panel of somatic tissues (uterus, heart, spleen, intestine, liver, lung, mammary gland, muscle). In situ hybridization confirmed oocyte-restricted expression of MATER and ZAR1 within the ovary, as early as preantral follicle stages. VASA was highly represented in the testis and the ovary, and still present in the oocyte from antral follicles. Maternal MATER, ZAR1, GDF9, and BMP15 transcripts persisted during oocyte in vitro maturation and fertilization and in preimplantation embryo until the five- to eight-cell or morula stage, but transcription was not reactivated at the time of embryonic genome activation.
Biology of Reproduction | 2007
Lucie Tosca; Christine Chabrolle; Svetlana Uzbekova; Joëlle Dupont
Abstract In mammals, IGFs are important for the proliferation and steroidogenesis of ovarian cells. Metformin is an insulin sensitizer molecule used for the treatment of the infertility of women with polycystic ovary syndrome. It is, however, unclear whether metformin acts on ovarian cells. Adenosine 5′ monophosphate-activated protein kinase (AMPK) is involved in metformin action in various cell types. We investigated the effects of metformin on bovine granulosa cell steroidogenesis in response to IGF1 and FSH, and studied AMPK in bovine ovaries. In granulosa cells from small follicles, metformin (10 mM) reduced production of both progesterone and estradiol and decreased the abundance of HSD3B, CYP11A1, and STAR proteins in presence or absence of FSH (10−8 M) and IGF1 (10−8 M). In cows, the different subunits of AMPK are expressed in various ovarian cells including granulosa and theca cells, corpus luteum, and oocytes. In bovine granulosa cells from small follicles, metformin, like AICAR (1 mM) a pharmaceutical activator of AMPK, increased phosphorylation of both Thr172 of AMPK alpha and Ser 79 of ACACA (Acetyl-CoA Carboxylase). Both metformin and AICAR treatment reduced progesterone and estradiol secretion in presence or absence of FSH and IGF1. Metformin decreased phosphorylation levels of MAPK3/MAPK1 and MAPK14 in a dose- and time-dependent manner. The adenovirus-mediated production of dominant negative AMPK abolished the effects of metformin on secretion of progesterone and estradiol and on MAPK3/MAPK1 phosphorylation but not on MAPK14 phosphorylation. Thus, in bovine granulosa cells, metformin decreases steroidogenesis and MAPK3/MAPK1 phosphorylation through AMPK activation.
Reproductive Biology and Endocrinology | 2010
Virginie Maillard; Svetlana Uzbekova; Florence Guignot; Christine Perreau; Christelle Ramé; Stéphanie Coyral-Castel; Joëlle Dupont
BackgroundAdiponectin is an adipokine, mainly produced by adipose tissue. It regulates several reproductive processes. The protein expression of the adiponectin system (adiponectin, its receptors, AdipoR1 and AdipoR2 and the APPL1 adaptor) in bovine ovary and its role on ovarian cells and embryo, remain however to be determined.MethodsHere, we identified the adiponectin system in bovine ovarian cells and embryo using RT-PCR, immunoblotting and immunohistochemistry. Furthermore, we investigated in vitro the effects of recombinant human adiponectin (10 micro g/mL) on proliferation of granulosa cells (GC) measured by [3H] thymidine incorporation, progesterone and estradiol secretions measured by radioimmunoassay in the culture medium of GC, nuclear oocyte maturation and early embryo development.ResultsWe show that the mRNAs and proteins for the adiponectin system are present in bovine ovary (small and large follicles and corpus luteum) and embryo. Adiponectin, AdipoR1 and AdipoR2 were more precisely localized in oocyte, GC and theca cells. Adiponectin increased IGF-1 10(-8) M-induced GC proliferation (P < 0.01) but not basal or insulin 10(-8) M-induced proliferation. Additionally, adiponectin decreased insulin 10(-8) M-induced, but not basal or IGF-1 10(-8) M-induced secretions of progesterone (P < 0.01) and estradiol (P < 0.05) by GC. This decrease in insulin-induced steroidogenesis was associated with a decrease in ERK1/2 MAPK phosphorylation in GC pre-treated with adiponectin. Finally, addition of adiponectin during in vitro maturation affected neither the percentage of oocyte in metaphase-II nor 48-h cleavage and blastocyst day 8 rates.ConclusionsIn bovine species, adiponectin decreased insulin-induced steroidogenesis and increased IGF-1-induced proliferation of cultured GC through a potential involvement of ERK1/2 MAPK pathway, whereas it did not modify oocyte maturation and embryo development in vitro.
BMC Developmental Biology | 2006
Sophie Pennetier; Christine Perreau; Svetlana Uzbekova; Aurore Thélie; Bernadette Delaleu; Pascal Mermillod; Rozenn Dalbiès-Tran
BackgroundMater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits.ResultsHere we have analyzed gene expression during folliculogenesis and preimplantation embryo development. In situ hybridization and immunohistochemistry on bovine ovarian section revealed that both the transcript and protein are restricted to the oocyte from primary follicles onwards, and accumulate in the oocyte cytoplasm during follicle growth. In immature oocytes, cytoplasmic, and more precisely cytosolic localization of MATER was confirmed by immunohistochemistry coupled with confocal microscopy and immunogold electron microscopy. By real-time PCR, MATER messenger RNA was observed to decrease strongly during maturation, and progressively during the embryo cleavage stages; it was hardly detected in morulae and blastocysts. The protein persisted after fertilization up until the blastocyst stage, and was mostly degraded after hatching. A similar predominantly cytoplasmic localization was observed in blastomeres from embryos up to 8-cells, with an apparent concentration near the nuclear membrane.ConclusionAltogether, these expression patterns are consistent with bovine MATER protein being an oocyte specific maternal effect factor as in mouse.
Biology of Reproduction | 2008
Svetlana Uzbekova; Yannick Arlot-Bonnemains; Joëlle Dupont; Rozenn Dalbiès-Tran; Pascal Papillier; Sophie Pennetier; Aurore Thélie; Christine Perreau; Pascal Mermillod; Claude Prigent; Rustem Uzbekov
Abstract Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases—localized in centrosomes, chromosomes, and midbody—regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes—AURKA, AURKB, and AURKC—in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.
Biology of Reproduction | 2007
Lucie Tosca; Svetlana Uzbekova; Christine Chabrolle; Joëlle Dupont
Abstract The 5′AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 μM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.
Transgenic Research | 2005
Caroline Martin; Martine Plat; Véronique Nerrière-Daguin; Flora Coulon; Svetlana Uzbekova; Eric Venturi; Françoise Condé; Jean-Michel Hermel; Philippe Hantraye; Laurent Tesson; Ignacio Anegon; Benoît Melchior; Marc Peschanski; Brigitte Le Mauff; Françoise Boeffard; Solène Sergent-Tanguy; Isabelle Neveu; Philippe Naveilhan; Jean-Paul Soulillou; Michel Terqui; Philippe Brachet; Bernard Vanhove
The transplantation of fetal porcine neurons is a potential therapeutic strategy for the treatment of human neurodegenerative disorders. A major obstacle to xenotransplantation, however, is the immune-mediated rejection that is resistant to conventional immunosuppression. To determine whether genetically modified donor pig neurons could be used to deliver immunosuppressive proteins locally in the brain, transgenic pigs were developed that express the human T cell inhibitory molecule hCTLA4-Ig under the control of the neuron-specific enolase promoter. Expression was found in various areas of the brain of transgenic pigs, including the mesencephalon, hippocampus and cortex. Neurons from 28-day old embryos secreted hCTLA4-Ig in vitro and this resulted in a 50% reduction of the proliferative response of human T lymphocytes in xenogenic proliferation assays. Transgenic embryonic neurons also secreted hCTLA4-Ig and had developed normally in vivo several weeks after transplantation into the striatum of immunosuppressed rats that were used here to study the engraftment in the absence of immunity. In conclusion, these data show that neurons from our transgenic pigs express hCTLA4-Ig in situ and support the use of this material in future pre-clinical trials in neuron xenotransplantation.
Reproduction in Domestic Animals | 2008
Pascal Mermillod; Rozenn Dalbiès-Tran; Svetlana Uzbekova; Aurore Thélie; Traverso Jm; Christine Perreau; Pascal Papillier; Philippe Monget
Mammalian ovaries contain a large stock of oocytes enclosed in primordial follicles. Ovarian cyclic activity induces some of these follicles to initiate growth towards a possible ovulation. However, most of these follicles terminate their growth at any moment and degenerate through atresia. In growing follicles, only a subset of oocytes are capable to support meiosis, fertilization and early embryo development to the blastocyst stage, as shown through embryo in vitro production experiments. This proportion of competent oocytes is increasing along with follicular size. Growing lines of evidence suggest that oocyte competence relies on the storage of gene products (messenger RNA or protein) that will be determinant to support early stages of embryo development, before full activation of embryonic genome. Given these facts, the question is: are these gene products stored in oocytes during late folliculogenesis, allowing an increasing proportion of them to become competent? Alternatively, these transcripts may be stored during early folliculogenesis as the oocyte grows and displays high transcription activity. Several arguments support this latter hypothesis and are discussed in this review: (i) many attempts at prolonged culture of oocytes from antral follicles have failed to increase developmental competence, suggesting that developmental competence may be acquired before antral formation; (ii) the recent discovery of oocyte secreted factors and of their ability to regulate many parameters of surrounding somatic cells, possibly influencing the fate of follicles between ovulation or atresia, suggests a central role of oocyte quality in the success of folliculogenesis. Finally, in addition to their role in interfollicular regulation of ovulation rate, late folliculogenesis regulation and atresia could also be seen as a selective process aimed at the elimination through follicular atresia of oocytes that did not succeed to store proper gene products set during their growth.
Reproduction | 2011
M. G. Catalá; D. Izquierdo; Svetlana Uzbekova; Roser Morató; M. Roura; R. Romaguera; Pascal Papillier; María Teresa Paramio
The aim of this study was to test the Brilliant Cresyl Blue (BCB) stain to select prepubertal sheep oocytes for in vitro blastocyst production. Oocyte diameter, mitochondrial activity, maturation-promoting factor (MPF) activity and mRNA relative expression (RE) of genes related to metabolism (ATPase Na(+)/K(+) transporting α 1 (ATP1A1) and cytochrome c oxidase subunit 1 (COX1)) and constitutive function of the cell (cytoplasmic polyadenylation-element-binding protein (CPEB) and S100A10) were assessed. Immature oocytes were exposed to different BCB concentrations (13, 26, 39 and 52 μM) and classified according to their cytoplasm colouration as grown BCB+ (blue cytoplasm) and growing BCB- (colourless cytoplasm). Staining oocytes with 13 μM BCB during 60 min allows selection of (BCB+) the largest (123.66 μm) and most competent oocytes to develop to the blastocyst stage (21%) with a higher number of cells (69.71 ± 6.19 s.e.m.) compared with non-stained BCB- oocytes (106.82 μm, 9% and 45.91 ± 3.35 s.e.m. respectively). Mitochondrial activity, assessed by MitoTracker Orange CMTMRos probe, was significantly higher in BCB+ than in BCB- oocytes after in vitro maturation (3369 and 1565 AU respectively). MPF activity was assessed by CDC2 kinase activity assay showing significantly higher activity at metaphase II stage in BCB+ than in BCB- oocytes (1.479 ± 0.09 and 1.184 ± 0.05 optical density respectively). The genes analysed in this work, ATP1A1, COX1, CPEB and S100A 10, did not show significant effect in mRNA RE between BCB selected oocytes. In conclusion, BCB stains larger and more competent oocytes to develop to the blastocyst stage with more active mitochondria and MPF activity and higher blastocyst cell number.
Theriogenology | 2011
Mohamad Salhab; Lucie Tosca; Cédric Cabau; Pascal Papillier; Christine Perreau; Joëlle Dupont; Pascal Mermillod; Svetlana Uzbekova
In vitro maturation of oocytes is a crucial step in assisted reproductive technologies in cattle; however, the molecular mechanisms of cumulus contribution to oocyte developmental potential require more investigation. Based on transcriptomic data, we studied by using real-time RT-PCR and western blot in bovine cumulus cells, the kinetics of expression of several candidate genes involved in oxidative stress response, apoptosis, steroid metabolism and signal transmission throughout IVM. Phosphorylations of the components of the main signaling pathways were also analyzed. In addition, IVM was performed in different maturation mediums which influenced the cumulus apoptosis, progesterone secretion and oocyte developmental competence. Glutathione-S-transferase A1 (GSTA1) transcript and protein abundance significantly decreased throughout IVM progression. Similarly, transcript levels of FSH receptor and aromatase (CYP19A1) and protein levels of three steroidogenic enzymes (steroidogenic acute regulatory protein, cytochrome P450scc and 3-beta-hydroxysteroid dehydrogenase) decreased along with progression of maturation and especially since 10 hours of IVM. Expression of progesterone receptor (PGR) and clusterin (CLU) mRNA and phosphorylations of protein kinases AKT, MAPK P38 and SMAD2 were particularly increased at 10 hours of IVM. This expression pattern supposed the role of these factors during oocyte metaphase-I check point of meiosis. Levels of CLU, GSTA1 and FSHR transcripts were higher in 199 basic hormone-free medium as compared to the medium 199EM, enriched in gonadotropins and growth factors, in which we recorded the higher developmental rate and progesterone secretion. Higher phosphorylation levels of SMAD2, AKT and MAP kinase JNK1, but not of MAP kinases ERK1/ERK2 or P38, was positively correlated with oocyte developmental competence and progesterone secretion and negatively correlated with cumulus apoptosis rate. These factors and signaling pathways in cumulus cells are potentially involved in controlling different stages of oocyte nuclear maturation and acquirement of its developmental potential.