Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Saint-Pierre is active.

Publication


Featured researches published by Christine Saint-Pierre.


Helvetica Chimica Acta | 2001

Damage to isolated DNA mediated by singlet oxygen

Jean-Luc Ravanat; Christine Saint-Pierre; Paolo Di Mascio; Glaucia R. Martinez; Marisa H. G. Medeiros; Jean Cadet

In the present work, we study the reaction of singlet oxygen (1O2) with isolated DNA. Emphasis is placed on the identification and quantitative measurement of the DNA modifications that are produced by the reaction of 1O2 with DNA. For this purpose, calf-thymus DNA was incubated with the endoperoxide of N,N′-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide, a chemical generator of 1O2. Thereafter, DNA was digested, and the resulting oxidized nucleosides were measured by means of a recently optimized high-performance-liquid-chromatography tandem-mass-spectrometry assay. It was found that, among the different DNA lesions observed, 7,8-dihydro-8-oxo-2′-deoxyguanosine is the major 1O2-mediated DNA-damage product. Interestingly, cyclobutane pyrimidine dimers, oxidized pyrimidine bases, 7,8-dihydro-8-oxo-2′-deoxyadenosine, and 2,6-diamino-5-formamido-4-hydroxypyrimidine are not formed, at least not in detectable amounts, following treatment of DNA with the 1O2 generator. The reported results strongly suggest that the decomposition of the endoperoxide provides a pure source of 1O2, and that reaction of 1O2 with isolated DNA induces the specific formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine.


Nucleic Acids Research | 2009

Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling

Giuseppe Sicoli; Gérald Mathis; Samia Aci-Sèche; Christine Saint-Pierre; Yves Boulard; Didier Gasparutto; Serge Gambarelli

Double electron-electron resonance (DEER) was applied to determine nanometre spin–spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes’ positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.


Biochemistry | 2009

A ZnS4 Structural Zinc Site in the Helicobacter pylori Ferric Uptake Regulator

Sylvia Vitale; Caroline Fauquant; David Lascoux; Kristine Schauer; Christine Saint-Pierre; Isabelle Michaud-Soret

The ferric uptake regulator, Fur, is a global bacterial transcriptional regulator using iron as a cofactor to bind to specific DNA sequences. This paper describes the biochemical characterization of the native ferric uptake regulator from Helicobacter pylori (HpFur): oligomeric state, metal content, and characterization of a structural metal-binding site. HpFur contains six cysteines with two CxxC motifs, which makes it closer to Bacillus subtilis PerR (BsPerR) than to Escherichia coli Fur (EcFur). Chemical modifications of cysteine residues using iodoacetamide followed by mass spectrometry after enzymatic digestion strongly suggest that these two CxxC motifs containing cysteines 102-105 and 142-145 are involved in zinc binding in a ZnS(4) metal site. The other two cysteines (78 and 150) are not essential for DNA binding activity and do not perturb metal binding as demonstrated with the characterization of a FurC78SC150S double mutant. Chelating agent such as EDTA disrupts the dimeric structure into monomer which did not contain zinc anymore. Reconstitution of dimer from monomer requires reduction and Zn(2+) binding. Cadmium(II) substitution allows also dimer formation from monomer, and Cd(II)-substituted FurC78SC150S mutant presents a characteristic absorption of a Cd(II)Cys(4) metal-binding site. These results establish that coordination of the zinc ion in HpFur is ZnCys(4), therefore closer to the zinc site in BsPerR than in EcFur. Furthermore, the redox state of the cysteines and the zinc binding are essential to hold the H. pylori Fur in a dimeric state.


Organic and Biomolecular Chemistry | 2014

Synthesis of a multibranched porphyrin–oligonucleotide scaffold for the construction of DNA-based nano-architectures

Guillaume Clavé; Grégory Chatelain; Arianna Filoramo; Didier Gasparutto; Christine Saint-Pierre; Eric Le Cam; Olivier Piétrement; Vincent Guérineau; Stéphane Campidelli

The interest in the functionalization of oligonucleotides with organic molecules has grown considerably over the last decade. In this work, we report on the synthesis and characterization of porphyrin-oligonucleotide hybrids containing one to four DNA strands (P1-P4). The hybrid P4, which inserts one porphyrin and four DNA fragments, was combined with gold nanoparticles and imaged by transmission electron microscopy.


PLOS ONE | 2011

New Insights in the Removal of the Hydantoins, Oxidation Product of Pyrimidines, via the Base Excision and Nucleotide Incision Repair Pathways

Modesto Redrejo-Rodríguez; Christine Saint-Pierre; Sophie Couvé; Abdelghani Mazouzi; Alexander A. Ishchenko; Didier Gasparutto; Murat Saparbaev

Background Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. Methodology/Principal Findings Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5′ next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. Conclusions/Significance This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.


Nucleic Acids Research | 2016

Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

Ibtissam Talhaoui; N. A. Lebedeva; Gabriella Zarkovic; Christine Saint-Pierre; Mikhail M. Kutuzov; Maria V. Sukhanova; Bakhyt T. Matkarimov; Didier Gasparutto; Murat Saparbaev; O. I. Lavrik; Alexander A. Ishchenko

Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3′-cordycepin, 5′- and 3′-phosphate and also to 5′-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5′-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2′-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2′,1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1′ of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs.


Chemical Research in Toxicology | 2014

DNA-polyamine cross-links generated upon one electron oxidation of DNA.

Stéphanie Silerme; Laure Bobyk; Marisa TavernaPorro; Camille Cuier; Christine Saint-Pierre; Jean-Luc Ravanat

The possibility to induce the formation of covalent cross-links between polyamines and guanine following one electron oxidation of double stranded DNA has been evaluated. For such a purpose, a strategy has been developed to chemically synthesize the polyamine-C8-guanine adducts, and efforts have been made to characterize them. Then, an analytical method, based on HPLC separation coupled through electrospray ionization to tandem mass spectrometry, has been setup for their detection and quantification. Using such a sensitive approach, we have demonstrated that polyamine-C8-guanine adducts could be produced with significant yields in double stranded DNA following a one-electron oxidation reaction induced by photosensitization. These adducts, involving either putrescine, spermine, or spermidine, are generated by the nucleophilic addition of primary amino groups of polyamines onto the C8 position of the guanine radical cation. Our data demonstrate that such a nucleophilic addition of polyamines is much more efficient than the addition of a water molecule that leads to 8-oxo-7,8-dihydroguanine formation.


PLOS ONE | 2012

Highly mutagenic exocyclic DNA adducts are substrates for the human nucleotide incision repair pathway.

Paulina Prorok; Christine Saint-Pierre; Didier Gasparutto; Olga S. Fedorova; Alexander A. Ishchenko; Hervé Leh; Malcolm Buckle; Barbara Tudek; Murat Saparbaev

Background Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to the formation of etheno(ε)-bases including 1,N 6-ethenoadenine (εA) and 3,N 4-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5′ to a damaged base in a DNA glycosylase-independent manner. Methodology/Principal Findings Here we have characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. Activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has a high affinity for DNA containing ε-bases but cleaves DNA duplexes at an extremely slow rate. Consistent with this observation, oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC50 values in the range of 5–10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates, as expected, DNA fragments containing 5′-terminal ε-base residue. Conclusions/Significance The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggests that NIR may act as a backup pathway to BER to remove a large variety of genotoxic base lesions in human cells.


Nucleic Acids Research | 2006

Formation of isodialuric acid lesion within DNA oligomers via one-electron oxidation of 5-hydroxyuracil: characterization, stability and excision repair

Philippe Simon; Didier Gasparutto; Serge Gambarelli; Christine Saint-Pierre; Alain Favier; Jean Cadet

5-Hydroxyuracil is a major oxidized nucleobase that can be generated by the action of •OH radical and one-electron oxidants. The latter modified base that exhibits a low ionization potential is highly susceptible to further degradation upon exposure to various oxidants. Emphasis was placed in thiswork on the formation and characterization of one-electron oxidation products of 5-hydroxyuracil within DNA fragments of defined sequence. For this purpose, 5-hydroxyuracil containing single- and double-stranded oligonucleotides of various lengths were synthesized and then exposed to the oxidizing action of iridium salts. Isodialuric acid was found to be formed almost quantitatively by a one-electron oxidation mechanism for which relevant information was inferred from a freeze-quenched ESR study. Information on the stability of isodialuric acid thus formed and its conversion products in aqueous solutions was also gained from experiments performed at acidic, neutral and alkali pH’s. Moreover, biochemical features dealing with the substrate specificity of several bacterial and yeast base excision repair enzymes to remove isodialuric acid from site-specifically modified DNA fragments were determined.


Journal of Biological Chemistry | 2015

Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways

Ibtissam Talhaoui; Vladimir Shafirovich; Zhi Liu; Christine Saint-Pierre; Zhiger Akishev; Bakhyt T. Matkarimov; Didier Gasparutto; Nicholas E. Geacintov; Murat Saparbaev

Background: Base excision repair (BER) is the major pathway for repair of single oxidized nucleobases. Results: Bifunctional DNA glycosylases and AP endonucleases are able to remove cross-linked guanine in guanine(C8)-thymine(N3) intrastrand cross-links. Conclusion: BER pathways can repair the intrastrand cross-links. Significance: Oxidatively generated intrastrand cross-linked DNA lesions can be repaired in HeLa cell extracts not only by nucleotide excision repair, but also by multiple BER pathways. Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

Collaboration


Dive into the Christine Saint-Pierre's collaboration.

Top Co-Authors

Avatar

Didier Gasparutto

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Forest

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Lud Cadet

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Michaud-Soret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mélanie Flaender

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Douki

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge