Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Didier Gasparutto is active.

Publication


Featured researches published by Didier Gasparutto.


Mutation Research | 1999

Hydroxyl radicals and DNA base damage.

Jean Cadet; Thierry Delatour; Thierry Douki; Didier Gasparutto; Jean-Pierre Pouget; Jean-Luc Ravanat; Sylvie Sauvaigo

Modified purine and pyrimidine bases constitute one of the major classes of hydroxyl-radical-mediated DNA damage together with oligonucleotide strand breaks, DNA-protein cross-links and abasic sites. A comprehensive survey of the main available data on both structural and mechanistic aspects of.OH-induced decomposition pathways of both purine and pyrimidine bases of isolated DNA and model compounds is presented. In this respect, detailed information is provided on both thymine and guanine whereas data are not as complete for adenine and cytosine. The second part of the overview is dedicated to the formation of.OH-induced base lesions within cellular DNA and in vivo situations. Before addressing this major point, the main available methods aimed at singling out.OH-mediated base modifications are critically reviewed. Unfortunately, it is clear that the bulk of the chemical and biochemical assays with the exception of the high performance liquid chromatographic-electrochemical detection (HPLC/ECD) method have suffered from major drawbacks. This explains why there are only a few available accurate data concerning both the qualitative and quantitative aspects of the.OH-induced formation of base damage within cellular DNA. Therefore, major efforts should be devoted to the reassessment of the level of oxidative base damage in cellular DNA using appropriate assays including suitable conditions of DNA extraction.


Nature Biotechnology | 2007

Molecular breeding of polymerases for amplification of ancient DNA

Marc d'Abbadie; Michael Hofreiter; Alexandra Vaisman; David Loakes; Didier Gasparutto; Jean Cadet; Roger Woodgate; Svante Pääbo; Philipp Holliger

In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000–60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.


Mutation Research-reviews in Mutation Research | 2000

Oxidative base damage to DNA: specificity of base excision repair enzymes.

Jean Cadet; Anne-Gaëlle Bourdat; Cédric D'Ham; Victor Duarte; Didier Gasparutto; Anthony Romieu; Jean-Luc Ravanat

Base excision repair (BER) is likely to be the main mechanism involved in the enzymatic restoration of oxidative base lesions within the DNA of both prokaryotic and eukaryotic cells. Emphasis was placed in early studies on the determination of the ability of several bacterial DNA N-glycosylases, including Escherichia coli endonuclease III (endo III) and formamidopyrimidine DNA N-glycosylase (Fpg), to recognize and excise several oxidized pyrimidine and purine bases. More recently, the availability of related DNA repair enzymes from yeast and human has provided new insights into the enzymatic removal of several.OH-mediated modified DNA bases. However, it should be noted that most of the earlier studies have involved globally modified DNA as the substrates. This explains, at least partly, why there is a paucity of accurate kinetic data on the excision rate of most of the modified bases. Interestingly, several oxidized pyrimidine and purine nucleosides have been recently inserted into defined sequence oligonucleotides. The use of the latter substrates, together with overexpressed DNA N-glycosylases, allows detailed studies on the efficiency of the enzymatic release of the modified bases. This was facilitated by the development of accurate chromatographic and mass spectrometric methods aimed at measuring oxidized bases and nucleosides. As one of the main conclusions, it appears that the specificity of both endo III and Fpg proteins is much broader than expected a few years ago.


Molecular and Cellular Biology | 2007

ATP-Dependent Chromatin Remodeling Is Required for Base Excision Repair in Conventional but Not in Variant H2A.Bbd Nucleosomes

Hervé Menoni; Didier Gasparutto; Ali Hamiche; Jean Cadet; Stefan Dimitrov; Philippe Bouvet; Dimitar Angelov

ABSTRACT In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase β activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.


Nucleic Acids Research | 2005

Processing of a complex multiply damaged DNA site by human cell extracts and purified repair proteins

Grégory Éot-Houllier; Séverine Eon-Marchais; Didier Gasparutto; Evelyne Sage

Clustered DNA lesions, possibly induced by ionizing radiation, constitute a trial for repair processes. Indeed, recent studies suggest that repair of such lesions may be compromised, potentially leading to the formation of lethal double-strand breaks (DSBs). A complex multiply damaged site (MDS) composed of 8-oxoguanine and 8-oxoadenine on one strand, 5-hydroxyuracil, 5-formyluracil and a 1 nt gap on the other strand, within 17 bp was built and used to challenge several steps of base excision repair (BER) pathway with human whole-cell extracts and purified repair enzymes as well. We show a hierarchy in the processing of lesions within the MDS, in particular at the base excision step. In the present configuration, efficient excision of 5-hydroxyuracil and low cleavage at 8-oxoguanine prevent DSB formation and generate a short single-stranded region carrying the 8-oxoguanine. On the other hand, rejoining of the 1 nt gap occurs by the short-patch BER pathway, but is slightly retarded by the presence of the oxidized bases. Taken together, our results suggest a hierarchy in the processing of the lesions within the MDS, which prevents the formation of DSB, but would dramatically enhance mutagenesis. They also indicate that the mutagenic (or lethal) consequences of a complex MDS will largely depend on the first event in the processing of the MDS.


Biological Chemistry | 2002

Recent Aspects of Oxidative DNA Damage: Guanine Lesions, Measurement and Substrate Specificity of DNA Repair Glycosylases

Jean Lud Cadet; Sophie Bellon; Maurice Berger; Anne-Gaëlle Bourdat; Thierry Douki; Victor Duarte; Sandrine Frelon; Didier Gasparutto; Evelyne Muller; Jean-Luc Ravanat; Sylvie Sauvaigo

Abstract This review discusses recent aspects of oxidation reactions of DNA and model compounds involving mostly .OH radicals, oneelectron transfer process and singlet oxygen ([1]O[2]). Emphasis is placed on the formation of double DNA lesions involving a purine base on one hand and either a pyrimidine base or a 2-deoxyribose moiety on the other hand. Structural and mechanistic information is also provided on secondary oxidation reactions of 8-oxo-7,8-dihydro-2deoxyguanosine (8- oxodGuo), a major DNA marker of oxidative stress. Another major topic which is addressed here deals with recent developments in the measurement of oxidative base damage to cellular DNA. This has been mostly achieved using the accurate and highly specific HPLC method coupled with the tandem mass spectrometry detection technique. Interestingly, optimized conditions of DNA extraction and subsequent workup allow the accurate measurement of 11 modified nucleosides and bases within cellular DNA upon exposure to oxidizing agents, including UVA and ionizing radiations. In addition, the modified comet assay, which involves the use of bacterial DNA Nglycosylases to reveal two main classes of oxidative base damage, is applicable to isolated cells and is particularly suitable when only small amounts of biological material are available. Finally, recently available data on the substrate specificity of DNA repair enzymes belonging to the base excision pathways are briefly reviewed.


Journal of Biological Chemistry | 2008

DNA Repair and Free Radicals, New Insights into the Mechanism of Spore Photoproduct Lyase Revealed by Single Amino Acid Substitution

Alexia Chandor-Proust; Olivier Berteau; Thierry Douki; Didier Gasparutto; Sandrine Ollagnier-de-Choudens; Marc Fontecave; Mohamed Atta

The major DNA photoproduct in UV-irradiated Bacillus subtilis spores is the thymine dimer named spore photoproduct (SP, 5-(α-thyminyl)-5,6-dihydrothymine). The SP lesion has been found to be efficiently repaired by SP lyase (SPL) a very specific enzyme that reverses the SP to two intact thymines, at the origin of the great resistance of the spores to UV irradiation. SPL belongs to a superfamily of [4Fe-4S] iron-sulfur enzymes, called “Radical-SAM.” Here, we show that the single substitution of cysteine 141 into alanine, a residue fully conserved in Bacillus species and previously shown to be essential for spore DNA repair in vivo, has a major impact on the outcome of the SPL-dependent repair reaction in vitro. Indeed the modified enzyme catalyzes the almost quantitative conversion of the SP lesion into one thymine and one thymine sulfinic acid derivative. This compound results from the trapping of the allyl-type radical intermediate by dithionite, used as reducing agent in the reaction mixture. Implications of the data reported here regarding the repair mechanism and the role of Cys-141 are discussed.


Journal of Biological Chemistry | 2006

Dinucleotide Spore Photoproduct, a Minimal Substrate of the DNA Repair Spore Photoproduct Lyase Enzyme from Bacillus subtilis

Alexia Chandor; Olivier Berteau; Thierry Douki; Didier Gasparutto; Yannis Sanakis; Sandrine Ollagnier-de-Choudens; Mohamed Atta; Marc Fontecave

The overwhelming majority of DNA photoproducts in UV-irradiated spores is a unique thymine dimer called spore photoproduct (SP, 5-thymine-5,6-dihydrothymine). This lesion is repaired by the spore photoproduct lyase (SP lyase) enzyme that directly reverts SP to two unmodified thymines. The SP lyase is an S-adenosylmethionine-dependent iron-sulfur protein that belongs to the radical S-adenosylmethionine superfamily. In this study, by using a well characterized preparation of the SP lyase enzyme from Bacillus subtilis, we show that SP in the form of a dinucleoside monophosphate (spore photoproduct of thymidilyl-(3′–5′)-thymidine) is efficiently repaired, allowing a kinetic characterization of the enzyme. The preparation of this new substrate is described, and its identity is confirmed by mass spectrometry and comparison with authentic spore photoproduct. The fact that the spore photoproduct of thymidilyl-(3′–5′)-thymidine dimer is repaired by SP lyase may indicate that the SP lesion does not absolutely need to be contained within a single- or double-stranded DNA for recognition and repaired by the SP lyase enzyme.


Nucleic Acids Research | 2006

Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs

John P. McDonald; Ashley Hall; Didier Gasparutto; Jean Cadet; Jack Ballantyne; Roger Woodgate

For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications.


DNA Repair | 2009

The alkyltransferase-like ybaZ gene product enhances nucleotide excision repair of O6-alkylguanine adducts in E. coli

Gerard Mazón; Gaëlle Philippin; Jean Lud Cadet; Didier Gasparutto; Robert P. P. Fuchs

O(6)-methylguanine adducts are potent pre-mutagenic lesions owing to their high capacity to direct mis-insertion of thymine when bypassed by replicative DNA polymerases. The strong mutagenic potential of these adducts is prevented by alkyltransferases such as Ada and Ogt in Escherichia coli that transfer the methyl group to one of their cysteine residues. Alkyl residues larger than methyl are generally weak substrates for reversion by alkyltransferases. In this paper we have investigated the genotoxic potential of the O(6)-alkylguanine adducts formed by ethylene and propylene oxide using single-adducted plasmid probes. Our work shows that the ybaZ gene product, a member of the alkyltransferase-like protein family, strongly enhances the repair by nucleotide excision repair of the larger O(6)-alkylguanine adducts that are otherwise poor substrates for alkyltransferases. The YbaZ protein is shown to interact with UvrA. This factor may thus enhance the efficiency of nucleotide excision repair in a way similar to the Transcription-Repair Coupling factor Mfd, by recruiting the UvrA(2).UvrB complex to the adduct site via its interaction with UvrA.

Collaboration


Dive into the Didier Gasparutto's collaboration.

Top Co-Authors

Avatar

Christine Saint-Pierre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Douki

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Lud Cadet

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Anthony Romieu

Institut Universitaire de France

View shared research outputs
Top Co-Authors

Avatar

Thierry Livache

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Breton

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Victor Duarte

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge