Christine Salaün
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Salaün.
Traffic | 2004
Christine Salaün; Declan J. James; Luke H. Chamberlain
Exocytosis is the process whereby intracellular fluid‐filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid‐rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.
Journal of Cell Biology | 2010
Christine Salaün; Jennifer Greaves; Luke H. Chamberlain
S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.
Journal of Biological Chemistry | 2005
Christine Salaün; Gwyn W. Gould; Luke H. Chamberlain
SNAP-25 and its ubiquitously expressed homologue, SNAP-23, are SNARE proteins that are essential for regulated exocytosis in diverse cell types. Recent work has shown that SNAP-25 and SNAP-23 are partly localized in sphingolipid/cholesterol-rich lipid raft domains of the plasma membrane and that the integrity of these domains is important for exocytosis. Here, we show that raft localization is mediated by a 36-amino-acid region of SNAP-25 that is also the minimal sequence required for membrane targeting; this domain contains 4 closely spaced cysteine residues that are sites for palmitoylation. Analysis of endogenous levels of SNAP-25 and SNAP-23 present in lipid rafts in PC12 cells revealed that SNAP-23 (54% raft-associated) was almost 3-fold more enriched in rafts when compared with SNAP-25 (20% raft-associated). We report that the increased raft association of SNAP-23 occurs due to the substitution of a highly conserved phenylalanine residue present in SNAP-25 with a cysteine residue. Intriguingly, although the extra cysteine in SNAP-23 enhances its raft association, the phenylalanine at the same position in SNAP-25 acts to repress the raft association of this protein. These different raft-targeting signals within SNAP-25 and SNAP-23 are likely important for fine-tuning the exocytic pathways in which these proteins operate.
Journal of Biological Chemistry | 2008
Jennifer Greaves; Christine Salaün; Yuko Fukata; Masaki Fukata; Luke H. Chamberlain
Cysteine-string protein (CSP) is an extensively palmitoylated DnaJ-family chaperone, which exerts an important neuroprotective function. Palmitoylation is required for the intracellular sorting and function of CSP, and thus it is important to understand how this essential modification of CSP is regulated. Recent work identified 23 putative palmitoyl transferases containing a conserved DHHC domain in mammalian cells, and here we show that palmitoylation of CSP is enhanced specifically by co-expression of the Golgi-localized palmitoyl transferases DHHC3, DHHC7, DHHC15, or DHHC17. Indeed, these DHHC proteins promote stable membrane attachment of CSP, which is otherwise cytosolic. An inverse correlation was identified between membrane affinity of unpalmitoylated CSP mutants and subsequent palmitoylation: mutants with an increased membrane affinity localize to the endoplasmic reticulum (ER) and are physically separated from the Golgi-localized DHHC proteins. Palmitoylation of an ER-localized mutant could be rescued by brefeldin A treatment, which promotes the mixing of ER and Golgi membranes. Interestingly though, the palmitoylated mutant remained at the ER following brefeldin A washout and did not traffic to more distal membrane compartments. We propose that CSP has a weak membrane affinity that allows the protein to locate its partner Golgi-localized DHHC proteins directly by membrane “sampling.” Mutations that enhance membrane association prevent sampling and lead to accumulation of CSP on cellular membranes such as the ER. The coupling of CSP palmitoylation to Golgi membranes may thus be an important requirement for subsequent sorting.
Journal of Biological Chemistry | 2010
Jennifer Greaves; Oforiwa A. Gorleku; Christine Salaün; Luke H. Chamberlain
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.
Journal of Biological Chemistry | 2009
Laurent Beck; Christine Leroy; Christine Salaün; Germain Margall-Ducos; Chantal Desdouets; Gérard Friedlander
PiT1 is a Na+-phosphate (Pi) cotransporter located at the plasma membrane that enables Pi entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of Pi to the cell. Moreover, the role of Pi in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that Pi availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either Pi or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na+-Pi transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a Pi transporter in cell proliferation, tumor growth, and cell signaling.
Molecular Biology of the Cell | 2009
Jennifer Greaves; Gerald R. Prescott; Yuko Fukata; Masaki Fukata; Christine Salaün; Luke H. Chamberlain
SNAP25 is synthesized as a soluble protein but must associate with the plasma membrane to function in exocytosis; however, this membrane-targeting pathway is poorly defined. SNAP25 contains a palmitoylated cysteine-rich domain with four cysteines, and we show that coexpression of specific DHHC palmitoyl transferases is sufficient to promote SNAP25 membrane association in HEK293 cells. siRNA-mediated knockdown of its SNARE partner, syntaxin 1A, does not affect membrane interaction of SNAP25 in PC12 cells, whereas specific cysteine-to-alanine mutations perturb membrane binding, which is restored by leucine substitutions. These results suggest a role for cysteine hydrophobicity in initial membrane interactions of SNAP25, and indeed other hydrophobic residues in the cysteine-rich domain are also important for membrane binding. In addition to the cysteine-rich domain, proline-117 is also essential for SNAP25 membrane binding, and experiments in HEK293 cells revealed that mutation of this residue inhibits membrane binding induced by coexpression with DHHC17, but not DHHC3 or DHHC7. These results suggest a model whereby SNAP25 interacts autonomously with membranes via its hydrophobic cysteine-rich domain, requiring only sufficient expression of partner DHHC proteins for stable membrane binding. The role of proline-117 in SNAP25 palmitoylation is one of the first descriptions of elements within substrate proteins that modulate DHHC specificity.
Journal of Biological Chemistry | 2010
Christine Salaün; Christine Leroy; Alice Rousseau; Valérie Boitez; Laurent Beck; Gérard Friedlander
PiT1/SLC20A1 is a sodium-dependent Pi transporter expressed by most mammalian cells. Interestingly, PiT1 transcription has been shown to be up-regulated by the tumor necrosis factor α (TNF), and we have now investigated the possible involvement of PiT1 in TNF-induced apoptosis. We show that PiT1-depleted cells are more sensitive to the proapoptotic activity of TNF (i.e. when the antiapoptotic NFκB pathway is inactivated). These observations were made in the human HeLa cancer cell line either transiently or stably depleted in PiT1 by RNA interference and in immortalized mouse embryonic fibroblasts isolated from PiT1 knock-out embryos. Depletion of the closely related family member PiT2 had no effect on TNF-induced apoptosis, showing that this effect was specific to PiT1. The increased sensitivity of PiT1-depleted cells was evident regardless of the presence or absence of extracellular Pi, suggesting that a defect in Pi uptake was not involved in the observed phenotype. Importantly, we show that the re-expression of a Pi uptake mutant of PiT1 in PiT1−/− mouse embryonic fibroblasts delays apoptosis as efficiently as the WT protein, showing that this function of PiT1 is unrelated to its transport activity. Caspase-8 is more activated in PiT1-depleted cells, and our data reveal that the sustained activation of the MAPK JNK is up-regulated in response to TNF. JNK activity is actually involved in PiT1-depleted cell death because specific JNK inhibitors delay apoptosis.
Biochemical Society Transactions | 2015
Kimon Lemonidis; Martin W. Werno; Jennifer Greaves; Cinta Diez-Ardanuy; Maria C. Sanchez-Perez; Christine Salaün; David M. Thomson; Luke H. Chamberlain
The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.
Molecular and Cellular Neuroscience | 2017
Christine Salaün; Louise Ritchie; Jennifer Greaves; Trevor J. Bushell; Luke H. Chamberlain
ABSTRACT The S‐acyltransferase zDHHC2 mediates dynamic S‐acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S‐acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C‐terminal tail of zDHHC2: a non‐canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho‐mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals. HighlightsDynamic trafficking of zDHHC2 regulates the localisation of this S‐acylation enzyme and controls access to its substrates.Two separate (and atypical) sequences were identified within the C‐terminal tail of zDHHC2 that affect enzyme localisation.Mutating these motifs induced the accumulation of zDHHC2 at the plasma membrane of hippocampal neurons and PC12 cells.Phosphorylation may be a potential mechanism to regulate the efficacy of these sorting signals.
Collaboration
Dive into the Christine Salaün's collaboration.
Strathclyde Institute of Pharmacy and Biomedical Sciences
View shared research outputs