Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwyn W. Gould is active.

Publication


Featured researches published by Gwyn W. Gould.


Proceedings of the National Academy of Sciences of the United States of America | 2001

SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis

Luke H. Chamberlain; Robert D. Burgoyne; Gwyn W. Gould

Lipid rafts are microdomains present within membranes of most cell types. These membrane microdomains, which are enriched in cholesterol and glycosphingolipids, have been implicated in the regulation of certain signal transduction and membrane traffic pathways. To investigate the possibility that lipid rafts organize exocytotic pathways in neuroendocrine cells, we examined the association of proteins of the exocytotic machinery with rafts purified from PC12 cells. The target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (tSNARE) proteins syntaxin 1A and synaptosomal-associated protein of 25 kDa (SNAP-25) were both found to be highly enriched in lipid rafts (≈25-fold). The vesicle SNARE vesicle-associated membrane protein (VAMP)2 was also present in raft fractions, but the extent of this recovery was variable. However, further analysis revealed that the majority of VAMP2 was associated with a distinct class of raft with different detergent solubility characteristics to the rafts containing syntaxin 1A and SNAP-25. Interestingly, no other studied secretory proteins were significantly associated with lipid rafts, including SNARE effector proteins such as nSec1. Chemical crosslinking experiments showed that syntaxin1A/SNAP-25 heterodimers were equally present in raft and nonraft fractions, whereas syntaxin1A/nSec1 complexes were detected only in nonraft fractions. SDS-resistance assays revealed that raft-associated syntaxin1A/SNAP-25 heterodimers were able to interact with VAMP2. Finally, reduction of cellular cholesterol levels decreased the extent of regulated exocytosis of dopamine from PC12 cells. The results described suggest that the interaction of SNARE proteins with lipid rafts is important for exocytosis and may allow structural and spatial organization of the secretory machinery.


Cellular Signalling | 1997

Stress-activated Protein Kinases: Activation, Regulation and Function

Andrew Paul; Susan Wilson; Christopher M. Belham; Caspar J.M. Robinson; Pamela H. Scott; Gwyn W. Gould; Robin Plevin

The response of cells to extracellular stimuli is mediated in part by a number of intracellular kinase and phosphatase enzymes. Within this area of research the activation of the p42 and p44 isoforms of mitogen-activated protein (MAP) kinases have been extensively described and characterised as central components of the signal transduction pathways stimulated by both growth factors and G-protein-coupled receptor agonists. Signaling events mediated by these kinases are fundamental to cellular functions such as proliferation and differentiation. More recently, homologues of the p42 and p44 isoforms of MAP kinase have been described, namely the stress-activated protein kinases (SAPKs) or alternatively the c-jun N-terminal kinases (JNKs) and p38 MAP kinase (the mammalian homologue of yeast HOG1). These MAP kinase homologues are integral components of parallel MAP kinase cascades activated in response to a number of cellular stresses including inflammatory cytokines (e.g., Interleukin-1 (Il-1) and tumour necrosis factor-alpha (TNF-alpha), heat and chemical shock, bacterial endotoxin and ischaemia/cellular ATP depletion. Activation of these MAP kinase homologues mediates the transduction of extracellular signals to the nucleus and are pivotal events in the regulation of the transcription events that determine functional outcome in response to such stresses. In this review we highlight the identification and characterisation of the stress-activated MAP kinase homologues, their role as components of parallel MAP kinase pathways and the regulation of cellular responses following exposure to cellular stress.


Trends in Biochemical Sciences | 1990

Facilitative glucose transporters: an expanding family

Gwyn W. Gould; Graeme I. Bell

The uptake of glucose into most eukaryotic cells is accomplished by a carrier-mediated transport system, facilitative diffusion, which transports glucose down its chemical gradient in a stereospecific manner. Recent studies have shown that facilitative transport of glucose across the plasma membrane is mediated by a family of structurally related proteins. This review summarizes the structural and functional features of the family of facilitative glucose transporters.


The EMBO Journal | 2005

Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis

Andrew B. Fielding; Eric Schonteich; Johanne Matheson; Gayle M. Wilson; Xinzi Yu; Gilles R.X. Hickson; Sweta Srivastava; Stephen A. Baldwin; Rytis Prekeris; Gwyn W. Gould

The dual Rab11/Arf binding proteins, family of Rab11‐interacting proteins FIP3 and FIP4 function in the delivery of recycling endosomes to the cleavage furrow and are, together with Rab11, essential for completion of abscission, the terminal step of cytokinesis. Here, we report that both FIP3 and FIP4 bind Arf6 in a nucleotide‐dependent manner but exhibit differential affinities for Rab11 and Arf6. Both FIP3 and FIP4 can form ternary complexes with Rab11 and Arf6. Arf6 is localised to the furrow and midbody and we show that Arf6‐GTP functions to localise FIP3 and FIP4 to midbodies during cytokinesis. Exo70p, a component of the Exocyst complex, also localises to the furrow of dividing cells and interacts with Arf6. We show that depletion of Exo70p leads to cytokinesis failure and an impairment of FIP3 and Rab11 localisation to the furrow and midbody. Moreover, Exo70p co‐immunoprecipitates FIP3 and FIP4. Hence, we propose that FIP3 and FIP4 serve to couple Rab11‐positive vesicle traffic from recycling endosomes to the cleavage furrow/midbody where they are tethered prior to fusion events via interactions with Arf6 and the Exocyst.


Journal of Cell Biology | 2003

Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11

Blake Riggs; Wendy F. Rothwell; Sarah Mische; Gilles R.X. Hickson; Johanne Matheson; Thomas S. Hays; Gwyn W. Gould; William Sullivan

Cytokinesis requires a dramatic remodeling of the cortical cytoskeleton as well as membrane addition. The Drosophila pericentrosomal protein, Nuclear-fallout (Nuf), provides a link between these two processes. In nuf-derived embryos, actin remodeling and membrane recruitment during the initial stages of metaphase and cellular furrow formation are disrupted. Nuf is a homologue of arfophilin-2, an ADP ribosylation factor effector that binds Rab11 and influences recycling endosome (RE) organization. Here, we show that Nuf is an important component of the RE, and that these phenotypes are a consequence of Nuf activities at the RE. Nuf exhibits extensive colocalization with Rab11, a key RE component. GST pull-downs and the presence of a conserved Rab11-binding domain in Nuf demonstrate that Nuf and Rab11 physically associate. In addition, Nuf and Rab11 are mutually required for their localization to the RE. Embryos with reduced levels of Rab11 produce membrane recruitment and actin remodeling defects strikingly similar to nuf-derived embryos. These analyses support a common role for Nuf and Rab11 at the RE in membrane trafficking and actin remodeling during the initial stages of furrow formation.


Nature Reviews Molecular Cell Biology | 2009

New roles for endosomes: from vesicular carriers to multi-purpose platforms

Gwyn W. Gould; Jennifer Lippincott-Schwartz

The careful sorting and recycling of membranes and cargo and the intracellular delivery of proteins, toxins and viruses by endocytosis are well-established roles for the endocytic apparatus, which is present in all eukaryotic cells. Recently, it has become clear that endosomes have key roles in such diverse processes as cytokinesis, polarization and migration, in which their functions might be distinct from those classically associated with endosomes. We speculate that endosomes function as multifunctional platforms on which unique sets of molecular machines are assembled to suit different cellular roles.


Journal of Biological Chemistry | 2002

The Vesicle- and Target-SNARE Proteins That Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts Present on Distinct Intracellular Membranes

Luke H. Chamberlain; Gwyn W. Gould

Insulin stimulates the fusion of intracellular vesicles containing the glucose transporter Glut4 with the plasma membrane in adipocytes and muscle cells. Glut4 vesicle fusion is thought to be catalyzed by the interaction of the vesicle solubleN-ethyl-maleimide-sensitive fusion protein attachment protein receptor VAMP2 with the target solubleN-ethyl-maleimide-sensitive fusion protein attachment protein receptors SNAP-23 and syntaxin 4. Here, we use combined membrane fractionation, detergent solubility, and sucrose gradient flotation to demonstrate that the large majority (>70%) of SNAP-23 and a significant proportion of syntaxin 4 (∼35%) are associated with plasma membrane lipid rafts in 3T3-L1 adipocytes. Furthermore, VAMP2 is shown to be concentrated in lipid rafts isolated from intracellular membranes. Insulin stimulation had no effect on the plasma membrane raft association of SNAP-23 or syntaxin 4 but promoted VAMP2 insertion into plasma membrane rafts. Immunofluorescence analysis revealed that SNAP-23 was clustered at the plasma membrane and almost completely segregated from the transferrin receptor. SNAP-23 distribution seemed to be distinct from caveolin-1, and clusters of SNAP-23 were dispersed after cholesterol extraction with methyl-β-cyclodextrin, suggesting that the majority of SNAP-23 is associated with non-caveolar, cholesterol-rich lipid rafts. The results described implicate lipid rafts as important platforms for Glut4 vesicle fusion and suggest the hypothesis that such rafts may represent a spatial integration point of insulin signaling and membrane traffic.


Journal of Biological Chemistry | 1998

Vesicle-associated Membrane Protein 2 Plays a Specific Role in the Insulin-dependent Trafficking of the Facilitative Glucose Transporter GLUT4 in 3T3-L1 Adipocytes

Laura B. Martin; Annette M. Shewan; Caroline A. Millar; Gwyn W. Gould; David E. James

Vesicle-associated membrane protein 2 (VAMP2) has been implicated in the insulin-regulated trafficking of GLUT4 in adipocytes. It has been proposed that VAMP2 co-localizes with GLUT4 in a postendocytic storage compartment (Martin, S., Tellam, J., Livingstone, C., Slot, J. W., Gould, G. W., and James, D. E. (1996) J. Cell Biol. 134, 625–635), suggesting that it may play a role distinct from endosomal v-SNAREs (solubleN-ethylmaleimide-sensitive factor attachment protein receptors) such as cellubrevin that are also expressed in adipocytes. The present study examines the effects of recombinant glutathioneS-transferase (GST) fusion proteins encompassing the entire cytoplasmic tails of VAMP1, VAMP2, and cellubrevin on insulin-stimulated GLUT4 translocation in streptolysin O permeabilized 3T3-L1 adipocytes. GST-VAMP2 inhibited insulin-stimulated GLUT4 translocation by ∼35%, whereas GST-VAMP1 and GST-cellubrevin were without effect. A synthetic peptide corresponding to the unique N terminus of VAMP2 also inhibited insulin-stimulated GLUT4 translocation in a dose-dependent manner. This peptide had no effect on either guanosine 5′-3-O-(thio)triphosphate-stimulated GLUT4 translocation or on insulin-stimulated GLUT1 translocation. These results imply that GLUT4 and GLUT1 may undergo insulin-stimulated translocation to the cell surface from separate intracellular compartments. To confirm this, adipocytes were incubated with a transferrin-horseradish peroxidase conjugate to fill the itinerant endocytic system after which cells were incubated with H2O2 and diaminobenzidine. This treatment completely blocked insulin-stimulated movement of GLUT1, whereas in the case of GLUT4, movement to the surface was delayed but still reached similar levels to that observed in insulin-stimulated control cells after 30 min. These results suggest that the N terminus of VAMP2 plays a unique role in the insulin-dependent recruitment of GLUT4 from its intracellular storage compartment to the cell surface.


Cellular Signalling | 1999

Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages.

Andrew Paul; Ana Cuenda; Clare E. Bryant; Jo Murray; Edwin R. Chilvers; Philip Cohen; Gwyn W. Gould; Robin Plevin

In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.


Trends in Biochemical Sciences | 1998

Sugar transporters from bacteria, parasites and mammals: structure–activity relationships

Adrian R. Walmsley; Michael P. Barrett; Frédéric Bringaud; Gwyn W. Gould

Sugar transport across the plasma membrane is one of the most important transport processes. The cloning and expression of cDNAs from a superfamily of related sugar transporters that all adopt a 12-membrane-spanning-domain structure has opened new avenues of investigation, including presteady-state kinetic analysis. Structure-function analyses of mammalian and bacterial sugar transporters, and comparisons of these transporters with those of parasitic trypanosomatids, indicate that different environmental pressures have tailored the evolution of the various members of the sugar-transporter superfamily. Subtle distinctions in the function of these proteins can be related to particular amino acid residue substitutions.

Collaboration


Dive into the Gwyn W. Gould's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Martin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Lyall

Glasgow Royal Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge