Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Schäff is active.

Publication


Featured researches published by Christine Schäff.


Journal of Proteome Research | 2012

Increased anaplerosis, TCA cycling, and oxidative phosphorylation in the liver of dairy cows with intensive body fat mobilization during early lactation.

Christine Schäff; Sabina Börner; Sandra Hacke; Ulrike Kautzsch; Dirk Albrecht; H.M. Hammon; Monika Röntgen; Björn Kuhla

The onset of milk production lets mammals experience an enormous energy and nutrient demand. To meet these requirements, high-yielding dairy cows mobilize body fat resulting in an augmented hepatic oxidative metabolism, which has been suggested to signal for depressing hunger after calving. To examine how the extent of fat mobilization influences hepatic oxidative metabolism and thus potentially feed intake, blood and liver samples of 19 Holstein cows were taken throughout the periparturient period. Retrospectively grouped according to high (H) and low (L) liver fat content, H cows showed higher fatty acid but lower amino acid plasma concentrations and lower feed intake than L cows. The hepatic phospho-AMPK/total AMP ratio was not different between groups but decreased after parturition. A 2-DE coupled MALDI-TOF-TOF analysis and qRT-PCR studies revealed H cows having lower expressions of major enzymes involved in mitochondrial β-oxidation, urea cycling, and the pentose phosphate pathway but higher expressions of enzymes participating in peroxisomal and endoplasmic fatty acid degradation, pyruvate and TCA cycling, amino acid catabolism, oxidative phosphorylation, and oxidative stress defense. These data indicate that increasing lipolysis leads to augmenting nutrient catabolism for anaplerosis and mitochondrial respiration, providing a molecular link between hepatic oxidative processes and feed intake.


Journal of Endocrinology | 2013

Plasma ghrelin is positively associated with body fat, liver fat and milk fat content but not with feed intake of dairy cows after parturition.

Sabina Börner; Michael Derno; Sandra Hacke; Ulrike Kautzsch; Christine Schäff; Sint ThanThan; Hideto Kuwayama; H.M. Hammon; Monika Röntgen; Rosemarie Weikard; Christa Kühn; Armin Tuchscherer; Björn Kuhla

Ghrelin is a gastrointestinal peptide hormone that is present in blood mostly in a non-posttranslationally modified form, with a minor proportion acylated at Ser(3). Both ghrelin forms were initially assigned a role in the control of food intake but there is accumulating evidence for their involvement in fat allocation and utilization. We investigated changes in the ghrelin system in dairy cows, exhibiting differences in body fat mobilization and fatty liver, from late pregnancy to early lactation. Sixteen dairy cows underwent liver biopsy and were retrospectively grouped based on high (H) or low (L) liver fat content post-partum. Both groups had a comparable feed intake in week -6 (before parturition) and week 2 (after parturition). Only before parturition was preprandial total ghrelin concentration higher in L than in H cows and only after parturition was the basal plasma concentration of non-esterified fatty acids higher in H than in L cows. Both before and after parturition, H cows had higher preprandial plasma concentrations of acyl ghrelin, a higher acyl:total ghrelin ratio, lower plasma triacylglyceride concentrations and a lower respiratory quotient compared with L cows. These group differences could not be attributed to an allelic variant of the acyl ghrelin receptor. Rather, the ratio of acyl:total ghrelin correlated with several aspects of fat metabolism and with respiratory quotient but not with feed intake. These results show that endogenous ghrelin forms are associated with fat allocation, fatty liver, and utilization of fat during the periparturient period.


Journal of Dairy Science | 2013

Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation

Christine Schäff; Sabina Börner; Sandra Hacke; Ulrike Kautzsch; H. Sauerwein; S.K. Spachmann; M. Schweigel-Röntgen; H.M. Hammon; Björn Kuhla

The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The decline in muscle fatty acid oxidation within the first 4 wk of lactation accompanied with increased feed intake refer to greater supply of ruminally derived acetate, which as the preferred fuel of the muscle, saves long-chain fatty acids for milk fat production.


PLOS ONE | 2016

Effects of Feeding Milk Replacer Ad Libitum or in Restricted Amounts for the First Five Weeks of Life on the Growth, Metabolic Adaptation, and Immune Status of Newborn Calves.

Christine Schäff; Jeannine Gruse; Josefine Maciej; Manfred Mielenz; Elisa Wirthgen; Andreas Hoeflich; Marion Schmicke; Ralf Pfuhl; Paulina Jawor; Tadeusz Stefaniak; H.M. Hammon

The pre-weaning period is critical for calf health and growth, and intensive milk feeding programs may assist postnatal development by improving body growth and organ maturation. The aim of the present work was to study the effects of ad libitum milk replacer (MR) feeding on the growth, metabolic adaptation, health, and immune status of newborn calves. Twenty-eight newborn Holstein and Holstein x Charolais crossbred calves were fed ad libitum (ADLIB) or in restricted amounts (6 liters per day; RES) during the first five weeks of life. The MR intake in the ADLIB treatment was gradually reduced at weeks 6 and 7, and all calves then received 6 liters of MR per day until day 60. Blood samples were collected to measure the plasma concentrations of metabolites, insulin, insulin-like growth factor (IGF)-I and IGF binding proteins (IGFBP), immunoglobulins, and acute phase proteins. The expression of mRNA associated with both the somatotropic axis and gluconeogenic enzymes was measured in the liver on day 60. Intensive feeding improved MR intake and growth in ADLIB without influencing concentrate intake. Carcass weight, perirenal fat, and muscle mass were greater in ADLIB. Plasma concentrations of glucose, triglycerides, insulin, and IGF-I were greater, whereas plasma concentrations of β-hydroxybutyrate, total protein, albumin, urea, IGFBP-2 and -4, and fibrinogen were lower at distinct time points in ADLIB. The hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase was greater in ADLIB. Most metabolic and endocrine differences occurred during the MR feeding period, but a slightly greater concentrate intake was associated with increased plasma IGF-I and insulin at the end of the study. The immune and health status of the calves were not affected by MR feeding. However, increased plasma fibrinogen in the RES group suggested differences in the acute phase response.


Journal of Dairy Science | 2015

Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin

J Maciej; Christine Schäff; Ellen Kanitz; Armin Tuchscherer; Rupert Bruckmaier; Siegfried Wolffram; H.M. Hammon

Abstract Polyphenols, such as flavonoids, are secondary plant metabolites with potentially health-promoting properties. In newborn calves flavonoids may improve health status, but little is known about the systemically availability of flavonoids in calves to exert biological effects. The aim of this study was to investigate the oral bioavailability of the flavonol quercetin, applied either as quercetin aglycone (QA) or as its glucorhamnoside rutin (RU), in newborn dairy calves. Twenty-one male newborn German Holstein calves were fed equal amounts of colostrum and milk replacer according to body weight. On d 2 and 29 of life, 9mg of quercetin equivalents/kg of body weight, either fed as QA or as RU, or no quercetin (control group) were fed together with the morning meal. Blood samples were taken before and 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 12, 24, and 48h after feed intake. Quercetin and quercetin metabolites with an intact flavonol structure (isorhamnetin, tamarixetin, and kaempferol) were analyzed in blood plasma after treatment with glucuronidase or sulfatase by HPLC with fluorescence detection. Maximum individual plasma concentration was depicted from the concentration-time-curve on d 2 and 29, respectively. Additional blood samples were taken to measure basal plasma concentrations of total protein, albumin, urea, and lactate as well as pre- and postprandial plasma concentrations of glucose, nonesterified fatty acids, insulin, and cortisol. Plasma concentrations of quercetin and its metabolites were significantly higher on d 2 than on d 29 of life, and administration of QA resulted in higher plasma concentrations of quercetin and its metabolites than RU. The relative bioavailability of total flavonols (sum of quercetin and its metabolites isorhamnetin, tamarixetin, and kaempferol) from RU was 72.5% on d 2 and 49.6% on d 29 when compared with QA (100%). Calves fed QA reached maximum plasma concentrations of total flavonols much earlier than did RU-fed calves. Plasma metabolites and hormones were barely affected by QA and RU feeding in this experiment. Taken together, orally administrated QA resulted in a greater bioavailability of quercetin than RU on d 2 and 29, respectively, and quercetin bioavailability of quercetin and its metabolites differed markedly between calves aged 2 and 29 d.


Journal of Dairy Science | 2016

Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving

C. Weber; Christine Schäff; Ulrike Kautzsch; Sabina Börner; S Erdmann; S. Görs; M. Röntgen; H. Sauerwein; Rupert Bruckmaier; Cornelia C. Metges; Björn Kuhla; Harald M. Hammon

Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both clamps, pp nonesterified fatty acid concentrations did not reach the ap levels. The study demonstrated a minor influence of different degrees of body fat mobilization on insulin metabolism in cows during the transition period. The distinct decrease in the glucose-dependent release of insulin pp is the most striking finding that explains the impaired insulin action after calving, but does not explain differences in body fat mobilization between HLFC and LLFC cows.


Journal of Dairy Science | 2014

Effects of colostrum versus formula feeding on hepatic glucocorticoid and α1- and β2-adrenergic receptors in neonatal calves and their effect on glucose and lipid metabolism

Christine Schäff; D. Rohrbeck; J. Steinhoff-Wagner; Ellen Kanitz; H. Sauerwein; Rupert Bruckmaier; H.M. Hammon

Neonatal energy metabolism in calves has to adapt to extrauterine life and depends on colostrum feeding. The adrenergic and glucocorticoid systems are involved in postnatal maturation of pathways related to energy metabolism and calves show elevated plasma concentrations of cortisol and catecholamines during perinatal life. We tested the hypothesis that hepatic glucocorticoid receptors (GR) and α₁- and β₂-adrenergic receptors (AR) in neonatal calves are involved in adaptation of postnatal energy metabolism and that respective binding capacities depend on colostrum feeding. Calves were fed colostrum (CF; n=7) or a milk-based formula (FF; n=7) with similar nutrient content up to d 4 of life. Blood samples were taken daily before feeding and 2h after feeding on d 4 of life to measure metabolites and hormones related to energy metabolism in blood plasma. Liver tissue was obtained 2 h after feeding on d 4 to measure hepatic fat content and binding capacity of AR and GR. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α₁- and β₂-AR and [(3)H]-dexamethasone for determination of GR in liver. Additional liver samples were taken to measure mRNA abundance of AR and GR, and of key enzymes related to hepatic glucose and lipid metabolism. Plasma concentrations of albumin, triacylglycerides, insulin-like growth factor I, leptin, and thyroid hormones changed until d 4 and all these variables except leptin and thyroid hormones responded to feed intake on d 4. Diet effects were determined for albumin, insulin-like growth factor I, leptin, and thyroid hormones. Binding capacity for GR was greater and for α₁-AR tended to be greater in CF than in FF calves. Binding affinities were in the same range for each receptor type. Gene expression of α₁-AR (ADRA1) tended to be lower in CF than FF calves. Binding capacity of GR was related to parameters of glucose and lipid metabolism, whereas β₂-AR binding capacity was negatively associated with glucose metabolism. In conclusion, our results indicate a dependence of GR and α₁-AR on milk feeding immediately after birth and point to an involvement of hepatic GR and AR in postnatal adaptation of glucose and lipid metabolism in calves.


General and Comparative Endocrinology | 2013

Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition

Sabina Börner; Elke Albrecht; Christine Schäff; Sandra Hacke; Ulrike Kautzsch; Michael Derno; H.M. Hammon; Monika Röntgen; H. Sauerwein; Björn Kuhla

Agouti-related protein (AgRP), produced by neurons located in the arcuate nucleus of the hypothalamus stimulates feed intake. During early lactation dairy cows increase their feed intake and additionally mobilize their fat reserves leading to increased plasma non-esterified fatty acid (NEFA) concentrations. Since cows with a higher extent of fat mobilization exhibit the lower feed intake, it seems that high NEFA concentrations confine hyperphagia. To test the involvement of AgRP neurons, we investigated 18 cows from parturition until day 40 postpartum (pp) and assigned the cows according to their NEFA concentration on day 40pp to either group H (high NEFA) or L (low NEFA). Both groups had comparable feed intake, body weight, milk yield, energy balance, plasma amino acids and leptin concentrations. Studies in respiratory chambers revealed the higher oxygen consumption and the lower respiratory quotient (RQ) in H compared to L cows. mRNA abundance of neuropeptide Y, peroxisome proliferator-activated receptor-gamma, AMP-activated protein kinase, and leptin receptor in the arcuate nucleus were comparable between groups. Immunohistochemical studies revealed the same number of AgRP neurons in H and L cows. AgRP neurons were co-localized with phosphorylated adenosine monophosphate-activated kinase without any differences between groups. The percentage of cFOS-activated AgRP neurons per total AgRP cells was lower in H cows and correlated negatively with oxygen consumption and NEFA, positively with RQ, but not with feed intake. We conclude that AgRP activation plays a pivotal role in the regulation of substrate utilization and metabolic rate in high NEFA dairy cows during early lactation.


Journal of Dairy Science | 2016

Short communication: Effects of oral flavonoid supplementation on the metabolic and antioxidative status of newborn dairy calves

J Maciej; Christine Schäff; Ellen Kanitz; Armin Tuchscherer; Rupert Bruckmaier; Siegfried Wolffram; H.M. Hammon

Scientific proof for flavonoids as a health tool in calf nutrition is inconsistent. We investigated the effects of the most abundant flavonoid, quercetin, and of a green tea extract (GTE) containing various catechins on the metabolic and antioxidative traits in dairy calves to clarify their potential health-promoting effects. Male newborn German Holstein calves (n=7 per group) received either no flavonoid (control group), 10mg of quercetin equivalents as quercetin aglycone or as rutin/kg of body weight (BW) per day, or 10mg/kg of BW per day of a GTE from d 2 to 26 of life. The supplements were provided with the morning and evening feeding. The calves were fed colostrum and milk replacer, and BW, feed intake, and health status were evaluated daily. Blood samples were collected from a jugular vein on d 1, 5, 12, 19, and 26 before the morning feeding to investigate the metabolic and antioxidative status of the calves. The growth performance and health status remained unchanged, but the GTE-fed calves had fewer loose feces than the controls. The plasma concentrations of quercetin changed over time and were higher in the rutin-fed group than in the control group, whereas the catechins were below the detection limit. The plasma Trolox equivalent antioxidative capacity and ferric reducing ability of plasma were measured as markers for plasma antioxidative capacity. The concentrations of Trolox equivalent antioxidative capacity increased, whereas ferric reducing ability of plasma decreased after the first day of life in all the groups. The oxidative stress markers in the plasma were measured as thiobarbituric acid reactive substances and F2-isoprostanes, but these did not indicate treatment or time effects. The plasma concentrations of total protein, albumin, urea, lactate, glucose, and nonesterified fatty acids and of insulin and cortisol varied over time, but no group differences were caused by the flavonoid supplementation. In summary, orally administered quercetin and catechins at the dosages used in the present study resulted in weak effects on health and no effects on the metabolic and antioxidative status of newborn dairy calves.


Journal of Dairy Science | 2015

Hepatic glucocorticoid and α1- and β2-adrenergic receptors in calves change during neonatal maturation and are related to energy regulation

Christine Schäff; D. Rohrbeck; J. Steinhoff-Wagner; Ellen Kanitz; H. Sauerwein; Rupert Bruckmaier; H.M. Hammon

Catecholamines and glucocorticoids are involved in fetal maturation of organ systems to prepare the fetus for extrauterine life. Calves, especially when born preterm, depend on function of the adrenergic system and the glucocorticoid axis to adapt energy metabolism for the neonatal period. We tested the hypothesis that hepatic glucocorticoid and α1- and β2-adrenergic receptors in neonatal calves are involved in adaptation of energy metabolism around birth and that respective binding capacities depend on stage of maturation during the neonatal period. Calves (n=7 per group) were delivered by section preterm (PT, 9d before term) or were born at term (full-term, FT; spontaneous vaginal delivery), or spontaneously born and fed colostrum for 4d (FTC). Blood samples were taken immediately after birth and before and 2h after feeding at 24h after birth (PT, FT) or on d 4 of life (FTC) to determine metabolic and endocrine changes. After slaughter at 26h after birth (PT, FT) or on d 4 of life (FTC), liver tissue was obtained to measure hepatic binding capacity of glucocorticoid and α1- and β2-adrenergic receptors. Maximal binding capacity and binding affinity were calculated by saturation binding assays using [(3)H]-prazosin and [(3)H]-CGP-12177 for determination of α1- and β2-adrenergic receptors, respectively, and [(3)H]-dexamethasone for determination of glucocorticoid receptor in liver. Additional liver samples were taken to measure mRNA abundance of glucocorticoid and α1- and β2-adrenergic receptors, of key enzymes and factors related to hepatic lipid metabolism, and of insulin-like growth factor 1 (IGF1). Plasma concentrations of β-hydroxybutyrate and leptin changed with time, and leptin concentrations were affected by stage of maturation. The binding capacities for hepatic glucocorticoid and β2-adrenergic receptors as well as gene expression of IGF1 were greater in FTC than in FT and PT, and binding affinity for β2-adrenergic receptor was lowest in PT. The binding capacity of hepatic α1-adrenergic receptor was greatest in FTC and greater in FT than in PT. The binding capacities of glucocorticoid and α1-adrenergic receptors were mainly related to variables of glucose and lipid metabolism. In conclusion, our results indicate dependence of hepatic glucocorticoid and adrenergic receptors on stage of maturation in neonatal calves and emphasize the association of α1-adrenergic receptor and glucocorticoid receptor with neonatal glucose and lipid metabolism.

Collaboration


Dive into the Christine Schäff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge