Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Kuhla is active.

Publication


Featured researches published by Björn Kuhla.


Annals of the New York Academy of Sciences | 2005

Methylglyoxal, glyoxal, and their detoxification in Alzheimer's disease.

Björn Kuhla; Hans-Joachim Lüth; Dietrich Haferburg; Katharina Boeck; Thomas Arendt; Gerald Münch

Abstract: The accumulation of advanced glycation end products (AGEs) in brains with Alzheimers disease (AD) has been implicated in the formation of insoluble deposits such as amyloid plaques and neurofibrillary tangles. AGEs are also known to activate glia, resulting in inflammation and neuronal dysfunction. As reactive intermediates of AGE formation, neurotoxic reactive dicarbonyl compounds such as glyoxal and methylglyoxal have been identified. One of the most effective detoxification systems for methylglyoxal and glyoxal is the glutathione‐dependent glyoxalase system, consisting of glyoxalase I and glyoxalase II. In this study, we have determined the methylglyoxal and glyoxal levels in the cerebrospinal fluid of AD patients compared to healthy controls. Methylglyoxal levels in AD patients were twofold higher than in controls, but this difference was not significant due to the large intergroup variations and the small sample size. However, the concentrations of both compounds were five to seven times higher in CSF than in plasma. We also investigated the glyoxalase I level in AD and healthy control brains. The number of glyoxalase I‐ positive neurons were increased in AD brains compared to controls. Our findings suggest that glyoxalase I is upregulated in AD in a compensatory manner to maintain physiological methylglyoxal and glyoxal levels.


Experimental Brain Research | 2003

Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells

Gerald Münch; Jovana Gasic-Milenkovic; Sladjana Dukic-Stefanovic; Björn Kuhla; Katrin Heinrich; Peter Riederer; Henri J. Huttunen; Hank Founds; Gangadharan Sajithlal

Abstract.Activation of glial cells has been proposed to contribute to neuronal dysfunction and neuronal cell death in Alzheimers disease. In this study, we attempt to determine some of the effects of secreted factors from activated murine N-11 microglia on viability and morphology of neurons using the differentiated neuroblastoma cell line Neuro2a. Microglia were activated either by lipopolysaccharide (LPS), bacterial cell wall proteoglycans, or advanced glycation endproducts (AGEs), protein-bound sugar oxidation products. At high LPS or AGE concentrations, conditioned medium from microglia caused neuronal cell death in a dose-dependent manner. At sublethal LPS or AGE concentrations, conditioned media inhibited retinoic acid-induced neurite outgrowth and stimulated retraction of already extended neurites. Among the many possible secreted factors, the contribution of NO or NO metabolites in the cytotoxicity of conditioned medium was investigated. Cell death and changes in neurite morphology were partly reduced when NO production was inhibited by nitric oxide synthase inhibitors. The results suggest that even in the absence of significant cell death, inflammatory processes, which are partly transmitted via NO metabolites, may affect intrinsic functions of neurons such as neurite extension that are essential components of neuronal morphology and thus may contribute to degenerative changes in Alzheimers disease.


Journal of Biological Chemistry | 2007

Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on Tau aggregation and filament formation

Björn Kuhla; Cathleen Haase; Katharina Flach; Hans-Joachim Lüth; Thomas Arendt; Gerald Münch

Accumulation of hyperphosphorylated Tau protein as paired helical filaments in pyramidal neurons is a major hallmark of Alzheimer disease. Besides hyperphosphorylation, other modifications of the Tau protein, such as cross-linking, are likely to contribute to the characteristic features of paired helical filaments, including their insolubility and resistance against proteolytic degradation. In this study, we have investigated whether the four reactive carbonyl compounds acrolein, malondialdehyde, glyoxal, and methylglyoxal accelerate the formation of Tau oligomers, thioflavin T-positive aggregates, and fibrils using wild-type and seven pseudophosphorylated mutant Tau proteins. Acrolein and methylglyoxal were the most reactive compounds followed by glyoxal and malondialdehyde in terms of formation of Tau dimers and higher molecular weight oligomers. Furthermore, acrolein and methylglyoxal induced the formation of thioflavin T-fluorescent aggregates in a triple pseudophosphorylation-mimicking mutant to a slightly higher degree than wild-type Tau. Analysis of the Tau aggregates by electron microscopy study showed that formation of fibrils using wild-type Tau and several Tau mutants could be observed with acrolein and methylglyoxal but not with glyoxal and malondialdehyde. Our results suggest that reactive carbonyl compounds, particularly methylglyoxal and acrolein, could accelerate tangle formation in vivo and that this process could be slightly accelerated, at least in the case of methylglyoxal and acrolein, by hyperphosphorylation. Interference with the formation or the reaction of these reactive carbonyl compounds could be a promising way of inhibiting tangle formation and neuronal dysfunction in Alzheimer disease and other tauopathies.


Appetite | 2010

Role of β-hydroxybutyric acid in the central regulation of energy balance ☆

Thomas Laeger; Cornelia C. Metges; Björn Kuhla

Although the phenomenon of beta-hydroxybutyric acid (BHBA) impact on satiety and thermogenesis has been described in the past decades, the underlying molecular mechanisms involved remain unresolved. Other metabolites such as glucose, fatty or branched chain amino acids are known to activate the AMP kinase pathway leading to an increase of anorexic and a decrease of orexigenic neuropeptides in the hypothalamus, one of the central regulators of energy homeostasis. Since BHBA is utilized as an energy source by the brain particularly in suckling newborns and under starving conditions, it is supposed to be a further central signal and energy providing substrate involved in the regulation of food intake. Moreover, BHBA might present a therapeutic approach for treating neuronal diseases because of its neuroprotective properties. Therefore, the purpose of this review is to summarize the known central effects of BHBA and to point out the importance of the identification of cellular pathways triggered in response to BHBA.


Neurobiology of Aging | 2007

Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer's disease brains

Björn Kuhla; Katharina Boeck; Angela Schmidt; Vera Ogunlade; Thomas Arendt; Gerald Münch; Hans-Joachim Lüth

The reaction of lysine and arginine residues of proteins with 1,2-dicarbonyl compounds result in the formation of advanced glycation end products (AGEs). Accumulation of AGEs is a characteristic feature of the aging brain and contributes to the development of neurodegenerative diseases such as Alzheimers disease (AD). Therefore, it is of particular interest to study the cellular defense mechanisms against AGE formation and particularly the detoxification of their precursors. AGE precursor compounds such as methylglyoxal and glyoxal were cellulary detoxified by the glyoxalase system, consisting of glyoxalases I and II. Glyoxalase I levels are diminished in old aged brains but elevated in AD brains. However, it is still unknown how glyoxalase I level of AD brains changes in a disease and in an age-dependent manner. Therefore, we investigated the AD stage- and the age-dependent levels of glyoxalase I in the Brodmann area 22 of AD brains (n=25) and healthy controls (n=10). Our results obtained from RT-PCR reveal reducing glyoxalase I RNA levels with advancing stage of AD and with increasing age. Western Blot analysis indicates that in comparison to healthy controls, glyoxalase I protein amounts are 1.5-fold increased in early AD subjects and continuously decrease in middle and late stages of AD. The glyoxalase I protein amounts of AD patients also decrease with age. Results obtained from glyoxalase I activity measurement show 1.05-1.2-fold diminished levels in AD brains compared to healthy controls and no significant decrease neither with the stage of AD nor with age. The immunohistochemical investigations demonstrate an elevated number of glyoxalase I stained neurons in brains of early and middle but not in late AD subjects compared to age-matched healthy controls. In addition, the stage-dependent immunohistochemical investigation demonstrates that with reduced glyoxalase I staining AGE deposits prevail, specifically in late stage of AD. In conclusion, the decrease of glyoxalase I expression with increasing AD stage might be one reason for methylglyoxal-induced neuronal impairment, apoptosis, and AGE formation in plaques and tangles.


Neurobiology of Aging | 2006

Age-dependent changes of glyoxalase I expression in human brain

Björn Kuhla; Katharina Boeck; Hans-Joachim Lüth; Angela Schmidt; Bernd Weigle; Marc Schmitz; Vera Ogunlade; Gerald Münch; Thomas Arendt

Increased modification and crosslinking of proteins by advanced glycation end products (AGEs) is a characteristic feature of aging, and contributes to the formation of many of the lesions of neurodegenerative diseases including neurofibrillary tangles and amyloid plaques in Alzheimers disease. Therefore, defense mechanisms against AGE formation or detoxification of their precursors such as the glyoxalase system are of particular interest in aging research. Thus, we investigated the age-dependent protein expression, the activity as well as the RNA level of glyoxalase I in Brodmann area 22 (auditory association area of superior temporal gyrus) of the human cerebral cortex. Our immunohistochemical results demonstrate the localization of glyoxalase I in neurons, predominantly pyramidal cells, as well as in astroglia, located predominantly in the subpial region. The number of glyoxalase I expressing neurons and astroglia increases with age, with a peak at approximately 55 years, and progressively decreases thereafter. These results were confirmed by biochemical investigations in total brain tissue, where the RNA, the protein level as well as the activity of glyoxalase I enzyme were analyzed in different age groups. In conclusion, the increase in glyoxalase I expression up to the age of 55 may be a compensatory mechanism against high oxoaldyde levels and the accumulation of AGEs. However, the decline of glyoxalase expression and activity in old age, possibly caused by impairment in transcription or/and translation, may subsequently lead to increased levels of reactive carbonyl compounds, followed by protein crosslinking, inflammation, oxidative stress and neuronal degeneration.


Physiological Genomics | 2009

Proteome analysis of fatty liver in feed-deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid, and glycogen metabolism

Björn Kuhla; Dirk Albrecht; Siegfried Kuhla; Cornelia C. Metges

The liver of dairy cows is involved in signaling the current hepatic metabolic state to the brain via metabolites and nerval afferents to control and adjust feed intake. Feed deprivation may result in mobilization of body reserves favoring hepatic steatosis. While the overall metabolic changes are well characterized, specific regulatory mechanisms are not readily understood. To identify molecular events associated with metabolic adaptation and the control of energy homeostasis, liver specimens from six ad libitum-fed and six feed-deprived cows were analyzed for selected metabolites, for the activation of AMP kinase, and for regulatory/regulated proteins using two-dimensional gel electrophoresis and MALDI-TOF-MS. Feed deprivation increased total liver fat and the calcium content, as well as augmented AMPK phosphorylation, while it decreased the contents of protein, glucose, glycogen, and cholesterol when expressed as a percentage of dry matter. Among 34 differentially expressed proteins identified, we found downregulation of proteins associated with fatty acid oxidation, glycolysis, electron transfer, protein degradation, and antigen processing, as well as cytoskeletal rearrangement. Proteins upregulated after feed deprivation included enzymes of the urea cycle, fatty acid or cholesterol transport proteins, an inhibitor of glycolysis, and previously unknown changes in calcium signaling network. Direct correlation was found between expression of glycolytic enzymes and glucose/glycogen content, whereas inverse correlation exists between expression of beta-oxidative enzymes and total liver fat content. In conclusion, the regulatory response of identified proteins may help to explain development and consequences of hepatic lipidosis but also offers novel candidates potentially involved in signaling for maintaining energy homeostasis.


Journal of Neural Transmission | 2004

Differential effects of “Advanced glycation endproducts” and β-amyloid peptide on glucose utilization and ATP levels in the neuronal cell line SH-SY5Y

Björn Kuhla; Claudia Loske; S. Garcia de Arriba; Reinhard Schinzel; J. Huber; Gerald Münch

Summary.β-amyloid peptide (Aβ) and “Advanced glycation endproducts” (AGEs) are components of the senile plaques in Alzheimer’s disease patients. It has been proposed that both AGEs and Aβ exert many of their effects, which include the upregulation of pro-inflammatory cytokines, through RAGE (“receptor for advanced glycation endproducts”). To investigate whether Aβ and AGEs cause similar or identical effects on cell survival and energy metabolism, we have compared the effects of a model-AGE and Aβ on cell viability, ATP level, glucose consumption and lactate production in the neuroblastoma cell line SH-SY5Y. The results show that AGEs and Aβ increase glucose consumption and decrease ATP levels in a dose dependent manner. Furthermore, both compounds decrease mitochondrial activity measured by the MTT assay. However, only AGEs decrease the number of cells and significantly increase lactate production. These data indicate that both AGEs and Aβ can cause differential disturbances in neuronal metabolism, which may contribute to the pathophysiological findings in Alzheimer’s disease. However, their signalling pathways are apparently quite distinct, a fact which should stimulate a more detailed investigation in this field, e.g. for the purpose of a rational design of potential “neuroprotective” RAGE antagonists.


Journal of Proteome Research | 2011

Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.

Björn Kuhla; Gerd Nürnberg; Dirk Albrecht; S. Görs; H.M. Hammon; Cornelia C. Metges

During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.


Journal of Animal Science | 2011

Perspectives for feed-efficient animal production1

Heiner Niemann; Björn Kuhla; Gerhard Flachowsky

Modern animal breeding programs are largely based on biotechnological procedures, including AI and embryo transfer technology. Recent breakthroughs in reproductive technologies, such as somatic cell nuclear transfer and in vitro embryo production, and their combination with the emerging molecular genetic tools, will further advance progress and provide new opportunities for livestock breeding. This is urgently needed in light of the global challenges such as the ever-increasing human population, the limited resources of arable land, and the urgent environmental problems associated with farm animal production. Here, we focus on genomic breeding strategies and transgenic approaches for making farm animals more feed efficient. Based on studies in the mouse and rat model, we have identified a panel of genes that are critically involved in the regulation of feed uptake and that could contribute toward future breeding of farm animals with reduced environmental impact. We anticipate that genetically modified animals will play a significant role in shaping the future of feed-efficient and thus sustainable animal production, but will develop more slowly than the biomedical applications because of the complexity of the regulation of feed intake and metabolism.

Collaboration


Dive into the Björn Kuhla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald Münch

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Albrecht

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge