Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine T. N. Pham is active.

Publication


Featured researches published by Christine T. N. Pham.


Nature Reviews Immunology | 2006

Neutrophil serine proteases: specific regulators of inflammation

Christine T. N. Pham

Neutrophils are essential for host defence against invading pathogens. They engulf and degrade microorganisms using an array of weapons that include reactive oxygen species, antimicrobial peptides, and proteases such as cathepsin G, neutrophil elastase and proteinase 3. As discussed in this Review, the generation of mice deficient in these proteases has established a role for these enzymes as intracellular microbicidal agents. However, I focus mainly on emerging data indicating that, after release, these proteases also contribute to the extracellular killing of microorganisms, and regulate non-infectious inflammatory processes by activating specific receptors and modulating the levels of cytokines.


Current Opinion in Immunology | 1998

How do cytotoxic lymphocytes kill their targets

Sujan Shresta; Christine T. N. Pham; Dori A. Thomas; Timothy A. Graubert; Timothy J. Ley

CD8+ cytotoxic lymphocytes, natural killer cells and lymphokine-activated killer cells depend primarily on the perforin/granzyme system to kill their targets, while CD4+ T cells utilize Fas and other mechanisms to induce cell death. The molecular mechanisms used by these pathways to induce target cell apoptosis may converge on common death substrates.


Journal of Clinical Investigation | 2002

Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis.

April M. Adkison; Sofia Z. Raptis; Diane G. Kelley; Christine T. N. Pham

Leukocyte recruitment in inflammation is critical for host defense, but excessive accumulation of inflammatory cells can lead to tissue damage. Neutrophil-derived serine proteases (cathepsin G [CG], neutrophil elastase [NE], and proteinase 3 [PR3]) are expressed specifically in mature neutrophils and are thought to play an important role in inflammation. To investigate the role of these proteases in inflammation, we generated a mouse deficient in dipeptidyl peptidase I (DPPI) and established that DPPI is required for the full activation of CG, NE, and PR3. Although DPPI(-/-) mice have normal in vitro neutrophil chemotaxis and in vivo neutrophil accumulation during sterile peritonitis, they are protected against acute arthritis induced by passive transfer of monoclonal antibodies against type II collagen. Specifically, there is no accumulation of neutrophils in the joints of DPPI(-/-) mice. This protective effect correlates with the inactivation of neutrophil-derived serine proteases, since NE(-/-) x CG(-/-) mice are equally resistant to arthritis induction by anti-collagen antibodies. In addition, protease-deficient mice have decreased response to zymosan- and immune complex-mediated inflammation in the subcutaneous air pouch. This defect is accompanied by a decrease in local production of TNF-alpha and IL-1 beta. These results implicate DPPI and polymorphonuclear neutrophil-derived serine proteases in the regulation of cytokine production at sites of inflammation.


Blood | 2008

Neutrophil secretion products pave the way for inflammatory monocytes

Oliver Soehnlein; Alma Zernecke; Einar E. Eriksson; Antonio Gigliotti Rothfuchs; Christine T. N. Pham; Heiko Herwald; Kiril Bidzhekov; Martin E. Rottenberg; Christian Weber; Lennart Lindbom

The leukocyte response in inflammation is characterized by an initial recruitment of polymorphonuclear leukocytes (PMN) preceding a second wave of monocytes to the site of injury or infection. In the mouse, 2 populations of monocytes have been identified, Gr1(-)CCR2(-)CX3CR1(hi) resident monocytes and Gr1(+)CCR2(+)CX3CR1(lo) inflammatory monocytes. Here, intravital microscopy of the musculus cremaster and a subcutaneous air pouch model were used to investigate a possible link between PMN extravasation and the subsequent emigration of inflammatory monocytes in response to local stimulation with PAF. In mice that were made neutropenic by injection of a PMN-depleting antibody, the extravasation of inflammatory monocytes, but not resident monocytes, was markedly reduced compared with mice with intact white blood cell count but was restored by local treatment with secretion of activated PMN. Components of the PMN secretion were found to directly activate inflammatory monocytes and further examination revealed PMN-derived LL-37 and heparin-binding protein (HBP/CAP37/azurocidin) as primary mediators of the recruitment of inflammatory monocytes via activation of formyl-peptide receptors. These data show that LL-37 and HBP specifically stimulate mobilization of inflammatory monocytes. This cellular cross-talk functionally results in enhanced cytokine levels and increased bacterial clearance, thus boosting the early immune response.


Arthritis & Rheumatism | 2009

Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta.

Leo A. B. Joosten; Mihai G. Netea; Giamila Fantuzzi; Marije I. Koenders; M.M.A. Helsen; Helmut Sparrer; Christine T. N. Pham; Jos W. M. van der Meer; Charles A. Dinarello; Wim B. van den Berg

OBJECTIVE Caspase 1, a known cysteine protease, is a critical component of the inflammasome. Both caspase 1 and neutrophil serine proteases such as proteinase 3 (PR3) can process pro-interleukin-1beta (proIL-1beta), a crucial cytokine linked to the pathogenesis of rheumatoid arthritis. This study was undertaken to establish the relative importance of caspase 1 and serine proteases in mouse models of acute and chronic inflammatory arthritis. METHODS Acute and chronic arthritis were induced in caspase 1-/- mice, and the lack of caspase 1 was investigated for its effects on joint swelling, cartilage metabolism, and histopathologic features. In addition, caspase 1 activity was inhibited in mice lacking active cysteine proteases, and the effects of dual blockade of caspase 1 and serine proteases on arthritis severity and histopathologic features were evaluated. RESULTS Surprisingly, caspase 1-/- mice, in a model of acute (neutrophil-dominated) arthritis, developed joint swelling to an extent similar to that in wild-type control mice. Joint fluid concentrations of bioactive IL-1beta were comparable in caspase 1-/- mice and controls. In contrast, induction of chronic arthritis (characterized by minimal numbers of neutrophils) in caspase 1-/- mice led to reduced joint inflammation and less cartilage damage, implying a caspase 1-dependent role in this process. In mice lacking neutrophil serine PR3, inhibition of caspase 1 activity resulted in decreased bioactive IL-1beta concentrations in the synovial tissue and less suppression of chondrocyte anabolic function. In addition, dual blockade of both PR3 and caspase 1 led to protection against cartilage and bone destruction. CONCLUSION Caspase 1 deficiency does not affect neutrophil-dominated joint inflammation, whereas in chronic arthritis, the lack of caspase 1 results in reduced joint inflammation and cartilage destruction. These findings suggest that inhibitors of caspase 1 are not able to interfere with the whole spectrum of IL-1beta production, and therefore such inhibitors may be of therapeutic value only in inflammatory conditions in which limited numbers of neutrophils are present.


Journal of Biological Chemistry | 2001

Dipeptidyl Peptidase I Is Essential for Activation of Mast Cell Chymases, but Not Tryptases, in Mice

Paul J. Wolters; Christine T. N. Pham; Diego J. Muilenburg; Timothy J. Ley; George H. Caughey

Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI −/− mice. We find that DPPI −/− mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI −/− mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI −/− BMMCs is 25% that of DPPI +/− BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.


Journal of Immunology | 2004

Papillon-Lefèvre Syndrome: Correlating the Molecular, Cellular, and Clinical Consequences of Cathepsin C/Dipeptidyl Peptidase I Deficiency in Humans

Christine T. N. Pham; Jennifer Ivanovich; Sofia Z. Raptis; Barbara Zehnbauer; Timothy J. Ley

A variety of neutral serine proteases are important for the effector functions of immune cells. The neutrophil-derived serine proteases cathepsin G and neutrophil elastase are implicated in the host defense against invading bacterial and fungal pathogens. Likewise, the cytotoxic lymphocyte and NK cell granule-associated granzymes A and B are important for the elimination of virus-infected cells. The activation of many of these serine proteases depends on the N-terminal processing activity of the lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI). Although mice deficient in DPPI have defects in serine protease activation in multiple cellular compartments, the role of DPPI for human serine protease activation is largely undefined. Papillon-Lefèvre syndrome (PLS) is a rare autosomal recessive disease associated with loss-of-function mutations in the DPPI gene locus. In this study, we established that the loss of DPPI activity is associated with severe reduction in the activity and stability of neutrophil-derived serine proteases. Surprisingly, patients with PLS retain significant granzyme activities in a cytotoxic lymphocyte compartment (lymphokine-activated killer) and have normal lymphokine-activated killer-mediated cytotoxicity against K562 cells. Neutrophils from patients with PLS do not uniformly have a defect in their ability to kill Staphylococcus aureus and Escherichia coli, suggesting that serine proteases do not represent the major mechanism used by human neutrophils for killing common bacteria. Therefore, this study defines the consequences of DPPI deficiency for the activation of several immune cell serine proteases in humans, and provides a molecular explanation for the lack of a generalized T cell immunodeficiency phenotype in patients with PLS.


Journal of Clinical Investigation | 2004

Mast cell dipeptidyl peptidase I mediates survival from sepsis

Jon Mallen-St. Clair; Christine T. N. Pham; S. Armando Villalta; George H. Caughey; Paul J. Wolters

Sepsis is a common, life-threatening disease for which there is little treatment. The cysteine protease dipeptidyl peptidase I (DPPI) activates granule-associated serine proteases, several of which play important roles in host responses to bacterial infection. To examine DPPIs role in sepsis, we compared DPPI(-/-) and DPPI(+/+) mice using the cecal ligation and puncture (CLP) model of septic peritonitis, finding that DPPI(-/-) mice are far more likely to survive sepsis. Outcomes of CLP in mice lacking mast cell DPPI reveal that the absence of DPPI in mast cells, rather than in other cell types, is responsible for the survival advantage. Among several cytokines surveyed in peritoneal fluid and serum, IL-6 is highly and differentially expressed in DPPI(-/-) mice compared with DPPI(+/+) mice. Remarkably, deleting IL-6 expression in DPPI(-/-) mice eliminates the survival advantage. The increase in IL-6 in septic DPPI(-/-) mice, which appears to protect these mice from death, may be related to reduced DPPI-mediated activation of mast cell tryptase and other peptidases, which we show cleave IL-6 in vitro. These results indicate that mast cell DPPI harms the septic host and that DPPI is a novel potential therapeutic target for treatment of sepsis.


Annals of the New York Academy of Sciences | 2006

Pathophysiology of abdominal aortic aneurysms: insights from the elastase-induced model in mice with different genetic backgrounds.

Robert W. Thompson; John A. Curci; Terri L. Ennis; Dongli Mao; Monica B. Pagano; Christine T. N. Pham

Abstract:  Abdominal aortic aneurysms (AAAs) represent a complex degenerative disorder involving chronic aortic wall inflammation and destructive remodeling of structural connective tissue. Studies using human AAA tissues have helped identify a variety of molecular mediators and matrix‐degrading proteinases, which contribute to aneurysm disease, thereby providing a sound foundation for understanding AAAs; however, these human tissue specimens represent only the “end stage” of a long and progressive disease process. Further progress in understanding the pathophysiology of AAAs is therefore dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. Based on original studies in rats, transient perfusion of the abdominal aorta with porcine pancreatic elastase has provided a reproducible and robust model of AAAs. More recent applications of this model to mice have also opened new avenues for investigation. In this review, we summarize investigations using the elastase‐induced mouse model of AAAs including results in animals with targeted deletion of specific genes and more general differences in mice on different genetic backgrounds. These studies have helped us identify genes that are essential to the development of AAAs (such as MMP9, IL6, and AT1R) and to reveal other genes that may be dispensable in aneurysm formation. Investigations on mice from different genetic backgrounds are also beginning to offer a novel approach to evaluate the genetic basis for susceptibility to aneurysm development.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of experimental abdominal aortic aneurysms

Monica B. Pagano; Michel Bartoli; Terri L. Ennis; Dongli Mao; Pamela M. Simmons; Robert W. Thompson; Christine T. N. Pham

Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease critical for the activation of granule-associated serine proteases, including neutrophil elastase, cathepsin G, and proteinase 3. DPPI and granule-associated serine proteases have been shown to play a key role in regulating neutrophil recruitment at sites of inflammation. It has recently been suggested that neutrophils and neutrophil-associated proteases may also be important in the development and progression of abdominal aortic aneurysms (AAAs), a common vascular disease associated with chronic inflammation and destructive remodeling of aortic wall connective tissue. Here we show that mice with a loss-of-function mutation in DPPI are resistant to the development of elastase-induced experimental AAAs. This is in part because of diminished recruitment of neutrophils to the elastase-injured aortic wall and impaired local production of CXC-chemokine ligand (CXCL) 2. Furthermore, adoptive transfer of wild-type neutrophils is sufficient to restore susceptibility to AAAs in DPPI-deficient mice, as well as aortic wall expression of CXCL2. In addition, in vivo blockade of CXCL2 by using neutralizing antibodies directed against its cognate receptor leads to a significant reduction in aortic dilatation. These findings suggest that DPPI and/or granule-associated serine proteases are necessary for neutrophil recruitment into the diseased aorta and that these proteases act to amplify vascular wall inflammation that leads to AAAs.

Collaboration


Dive into the Christine T. N. Pham's collaboration.

Top Co-Authors

Avatar

Samuel A. Wickline

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Antonina Akk

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dennis E. Hourcade

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Gregory M. Lanza

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Huimin Yan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hui-fang Zhou

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Luke E. Springer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ying Hu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hua Pan

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge