Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Tan is active.

Publication


Featured researches published by Christine Tan.


Nature | 2006

Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis.

John Ridgway; Gu Zhang; Yan Wu; Scott Stawicki; Wei Ching Liang; Yvan Chanthery; Joe Kowalski; Ryan J. Watts; Christopher A. Callahan; Ian Kasman; Mallika Singh; May Chien; Christine Tan; Jo Anne Hongo; Fred de Sauvage; Greg Plowman; Minhong Yan

Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.


Cancer Research | 2004

EphB2 as a Therapeutic Antibody Drug Target for the Treatment of Colorectal Cancer

Weiguang Mao; Elizabeth Luis; Sarajane Ross; Johnny Silva; Christine Tan; Craig Crowley; Clarissa J. Chui; Gretchen Franz; Peter D. Senter; Hartmut Koeppen; Paul Polakis

Analysis of human colorectal cancer specimens revealed overexpression of the EphB2 receptor tyrosine kinase. Monoclonal antibodies (MAbs) to extracellular sequence of EphB2 were raised and tested for activity against colorectal cancer cells. One of the MAbs, 2H9, effectively blocked the interaction of ephB2 with ephrin ligands and inhibited the resulting autophosphorylation of the receptor. However, this antibody did not affect the proliferation of cancer cells expressing ephB2. Immunocytochemical analysis revealed rapid internalization of the MAb 2H9 on binding ephB2, suggesting that target-dependent cell killing could be achieved with an antibody-drug conjugate. When MAb 2H9 was conjugated to monomethylauristatin E through a cathepsin B-cleavable linker, it specifically killed ephB2-expressing cancer cells in vitro and in vivo. Our results suggest that ephB2 is an attractive target for immunoconjugate cancer therapy.


Cell | 2010

PlGF Blockade Does Not Inhibit Angiogenesis during Primary Tumor Growth

Carlos Bais; Xiumin Wu; Jenny Yao; Suya Yang; Yongping Crawford; Krista McCutcheon; Christine Tan; Ganesh Kolumam; Jean-Michel Vernes; Jeffrey Eastham-Anderson; Peter Haughney; Marcin Kowanetz; Thijs J. Hagenbeek; Ian Kasman; Hani Bou Reslan; Jed Ross; Nick van Bruggen; Richard A. D. Carano; Yu-Ju Gloria Meng; Jo-Anne Hongo; Jean Philippe Stephan; Masabumi Shibuya; Napoleone Ferrara

It has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested. Furthermore, combination of anti-PlGF with anti-VEGF-A antibodies did not result in greater antitumor efficacy than anti-VEGF-A monotherapy. In conclusion, our data argue against an important role of PlGF during primary tumor growth in most models and suggest that clinical evaluation of anti-PlGF antibodies may be challenging.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages

Kit Wong; Patricia A. Valdez; Christine Tan; Sherry Yeh; Jo-Anne Hongo; Wenjun Ouyang

Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4−/− resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-α in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.


Nature | 2016

Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function

Elaine E. Storm; Steffen Durinck; Felipe de Sousa e Melo; Jarrod Tremayne; Noelyn M. Kljavin; Christine Tan; Xiaofen Ye; Cecilia Chiu; Thinh Pham; Jo-Anne Hongo; Travis W. Bainbridge; Ron Firestein; Elizabeth Blackwood; Ciara Metcalfe; Eric Stawiski; Robert L. Yauch; Yan Wu; Frederic J. de Sauvage

Colorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation. Notably, genes expressed in the stem-cell compartment of the intestine were among those most sensitive to anti-RSPO3 treatment. This observation, combined with functional assays, suggests that a stem-cell compartment drives PTPRK-RSPO3 colorectal tumour growth and indicates that the therapeutic targeting of stem-cell properties within tumours may be a clinically relevant approach for the treatment of colorectal tumours.


Molecular Cancer Therapeutics | 2008

Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake

Yonglei Shang; Yifan Mao; Jennifer Batson; Suzie J. Scales; Gail Lewis Phillips; Mark R. Lackner; Klara Totpal; Simon C. Williams; Jihong Yang; Zhijun Tang; Zora Modrusan; Christine Tan; Wei-Ching Liang; Siao Ping Tsai; Alexander N. Vanderbilt; Kenji Kozuka; Klaus P. Hoeflich; Janet Tien; Sarajane Ross; Congfen Li; Sang Hoon Lee; An Song; Yan Wu; Jean-Philippe Stephan; Avi Ashkenazi; Jiping Zha

The insulin-like growth factor (IGF) system consists of two ligands (IGF-I and IGF-II), which both signal through IGF-I receptor (IGF-IR) to stimulate proliferation and inhibit apoptosis, with activity contributing to malignant growth of many types of human cancers. We have developed a humanized, affinity-matured anti-human IGF-IR monoclonal antibody (h10H5), which binds with high affinity and specificity to the extracellular domain. h10H5 inhibits IGF-IR-mediated signaling by blocking IGF-I and IGF-II binding and by inducing cell surface receptor down-regulation via internalization and degradation, with the extracellular and intracellular domains of IGF-IR being differentially affected by the proteasomal and lysosomal inhibitors. In vitro, h10H5 exhibits antiproliferative effects on cancer cell lines. In vivo, h10H5 shows single-agent antitumor efficacy in human SK-N-AS neuroblastoma and SW527 breast cancer xenograft models and even greater efficacy in combination with the chemotherapeutic agent docetaxel or an anti–vascular endothelial growth factor antibody. Antitumor activity of h10H5 is associated with decreased AKT activation and glucose uptake and a 316-gene transcription profile with significant changes involving DNA metabolic and cell cycle machineries. These data support the clinical testing of h10H5 as a biotherapeutic for IGF-IR-dependent human tumors and furthermore illustrate a new method of monitoring its activity noninvasively in vivo via 2-fluoro-2-deoxy-d-glucose-positron emission tomography imaging. [Mol Cancer Ther 2008;7(9):2599–608]


Journal of Biological Chemistry | 2012

The melanosomal protein PMEL17 as a target for antibody drug conjugate therapy in melanoma

Youjun Chen; Cecile Chalouni; Christine Tan; Robyn Clark; Rayna Venook; Rachana Ohri; Helga Raab; Ron Firestein; William Mallet; Paul Polakis

Background: A search for cell surface proteins amenable to antibody drug conjugate (ADC) therapy was performed. Results: Expression of PMEL17 was highly restricted to melanoma cells, and an ADC directed against it was efficacious. Conclusion: PMEL17 is an attractive target for ADC therapy in melanoma. Significance: Intracellular transmembrane proteins that transit the cell surface represent a new class of targets for ADCs. Melanocytes uniquely express specialized genes required for pigment formation, some of which are maintained following their transformation to melanoma. Here we exploit this property to selectively target melanoma with an antibody drug conjugate (ADC) specific to PMEL17, the product of the SILV pigment-forming gene. We describe new PMEL17 antibodies that detect the endogenous protein. These antibodies help define the secretory fate of PMEL17 and demonstrate its utility as an ADC target. Although newly synthesized PMEL17 is ultimately routed to the melanosome, we find substantial amounts accessible to our antibodies at the cell surface that undergo internalization and routing to a LAMP1-enriched, lysosome-related organelle. Accordingly, an ADC reactive with PMEL17 exhibits target-dependent tumor cell killing in vitro and in vivo.


Cancer Research | 2002

Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate.

Sarajane Ross; Susan D. Spencer; Ilona Holcomb; Christine Tan; Jo Anne Hongo; Brigitte Devaux; Linda Rangell; Gilbert A. Keller; Peter Schow; Rita Steeves; Robert J. Lutz; Gretchen Frantz; Kenneth J. Hillan; Franklin Peale; Patti Tobin; David A. Eberhard; Mark A. Rubin; Laurence A. Lasky; Hartmut Koeppen


Blood | 2007

Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma

Andrew G. Polson; Shang-Fan Yu; Kristi Elkins; Bing Zheng; Suzanna Clark; Gladys S. Ingle; Dionysos Slaga; Lynne Giere; Changchun Du; Christine Tan; Jo-Anne Hongo; Alvin Gogineni; Mary J. Cole; Richard Vandlen; Jean Philippe Stephan; Judy Young; Wesley Chang; Suzie J. Scales; Sarajane Ross; Dan L. Eaton; Allen Ebens


International Immunology | 2006

Expression pattern of the human FcRH/IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia

Andrew G. Polson; Bing Zheng; Kristi Elkins; Wesley Chang; Changchun Du; Patrick Dowd; Lulu Yen; Christine Tan; Jo-Anne Hongo; Hartmut Koeppen; Allen Ebens

Collaboration


Dive into the Christine Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge