Ryan J. Watts
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryan J. Watts.
Nature | 2012
Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson
The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.
Nature | 2006
John Ridgway; Gu Zhang; Yan Wu; Scott Stawicki; Wei Ching Liang; Yvan Chanthery; Joe Kowalski; Ryan J. Watts; Christopher A. Callahan; Ian Kasman; Mallika Singh; May Chien; Christine Tan; Jo Anne Hongo; Fred de Sauvage; Greg Plowman; Minhong Yan
Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.
Nature | 2010
Yan Wu; Carol Cain-Hom; Lisa Choy; Thijs J. Hagenbeek; Gladys P. de Leon; Yongmei Chen; David Finkle; Rayna Venook; Xiumin Wu; John Ridgway; Dorreyah Schahin-Reed; Graham J. Dow; Amy Shelton; Scott Stawicki; Ryan J. Watts; Jeff Zhang; Robert Choy; Peter Howard; Lisa C. Kadyk; Minhong Yan; Jiping Zha; Christopher A. Callahan; Sarah G. Hymowitz; Christian W. Siebel
The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the γ-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although γ-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.
Science Translational Medicine | 2011
Y. Joy Yu; Yin Zhang; Margaret Kenrick; Kwame Hoyte; Wilman Luk; Yanmei Lu; Jasvinder Atwal; J. Michael Elliott; Saileta Prabhu; Ryan J. Watts; Mark S. Dennis
Brain uptake of a therapeutic bispecific antibody by receptor-mediated transcytosis is enhanced by reducing the antibody’s affinity for the transferrin receptor. A Trojan Horse Antibody Scales a Mighty Fortress As impenetrable as the walls of ancient Troy, the tight endothelial cell layer of the blood-brain barrier (BBB) allows only a few select molecules to enter the brain. Unfortunately, this highly effective fortress blocks passage of therapeutic antibodies, limiting their usefulness for treating diseases of the brain and central nervous system. Enter Ryan Watts and his team at Genentech with their ambitious dual goal of making a therapeutic antibody against a popular Alzheimer’s disease drug target, the enzyme β-secretase (BACE1), and developing a strategy to boost the amount of this antibody that enters the brain (Atwal et al. and Yu et al.). BACE1 processes the amyloid precursor protein into amyloid-β (Aβ) peptides including those molecular species that aggregate to form the amyloid plaques found in the brains of Alzheimer’s disease patients. By blocking the activity of BACE1, BACE1 inhibitors should reduce production of the aggregation-prone Aβ peptides, thus decreasing amyloid plaque formation and slowing Alzheimer’s disease progression. Although small-molecule inhibitors of BACE1 have been developed and can readily cross the BBB because of their small size, they do not show sufficient specificity and hence may have toxic side effects. Watts envisaged that a better approach to blocking BACE1 activity might be passive immunization with a highly specific anti-BACE1 antibody. So his team engineered an anti-BACE1 antibody that bound to BACE1 with exquisite specificity and blocked its activity (Atwal et al.). The investigators then showed that this antibody could reduce production of aggregation-prone Aβ peptides in cultured primary neurons. Next, Watts and his colleagues injected the antibody into mice and monkeys and demonstrated a sustained decrease in the concentrations of Aβ peptide in the circulation of these animals and to a lesser extent in the brain. The researchers knew that they must find a way to increase the amount of antibody getting into the brain to reduce Aβ peptide concentrations in the brain sufficiently to obtain a therapeutic effect. So Watts teamed up with fellow Genentechie, Mark Dennis, and they devised an ingenious solution (Yu et al.). The Genentech researchers knew that high-affinity antibodies against the transferrin receptor might be able to cross the BBB using a natural process called receptor-mediated transcytosis. However, when they tested their antibody, they found that although it readily bound to the BBB, it could not detach from the transferrin receptor and hence was not released into the brain. So, they made a series of lower-affinity mouse anti-transferrin receptor antibodies and found variants that could cross the BBB by receptor-mediated transcytosis and were released into the mouse brain once they got across the endothelial cell layer. Next, they designed a bispecific mouse antibody with one arm comprising a low-affinity anti-transferrin receptor antibody and the other arm comprising the high-affinity anti-BACE1 antibody that had shown therapeutic promise in their earlier studies. They demonstrated that their bispecific antibody was able to cross the BBB and reach therapeutic concentrations in the mouse brain. They then showed that this bispecific antibody was substantially more effective at reducing Aβ peptide concentrations in the mouse brain compared to the monospecific anti-BACE1 antibody. This elegant pair of papers not only demonstrates the therapeutic potential of an anti-BACE1 antibody for treating Alzheimer’s disease but also provides a strategy worthy of the ancient Greeks that could be applied to other therapeutic antibodies that require safe passage into the human brain. Monoclonal antibodies have therapeutic potential for treating diseases of the central nervous system, but their accumulation in the brain is limited by the blood-brain barrier (BBB). Here, we show that reducing the affinity of an antibody for the transferrin receptor (TfR) enhances receptor-mediated transcytosis of the anti-TfR antibody across the BBB into the mouse brain where it reaches therapeutically relevant concentrations. Anti-TfR antibodies that bind with high affinity to TfR remain associated with the BBB, whereas lower-affinity anti-TfR antibody variants are released from the BBB into the brain and show a broad distribution 24 hours after dosing. We designed a bispecific antibody that binds with low affinity to TfR and with high affinity to the enzyme β-secretase (BACE1), which processes amyloid precursor protein into amyloid-β (Aβ) peptides including those associated with Alzheimer’s disease. Compared to monospecific anti-BACE1 antibody, the bispecific antibody accumulated in the mouse brain and led to a greater reduction in brain Aβ after a single systemic dose. TfR-facilitated transcytosis of this bispecific antibody across the BBB may enhance its potency as an anti-BACE1 therapy for treating Alzheimer’s disease.
Nature Reviews Neuroscience | 2011
Edward A. Neuwelt; Bjoern Bauer; Christoph Fahlke; Gert Fricker; Constantino Iadecola; Damir Janigro; Luc Leybaert; Zoltán Molnár; Martha E. O'Donnell; John T. Povlishock; Norman R. Saunders; Frank R. Sharp; Danica Stanimirovic; Ryan J. Watts; Lester R. Drewes
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood–brain barrier (BBB) and the blood–cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and — when barrier integrity is impaired — in the pathology of many common CNS disorders such as Alzheimers disease, Parkinsons disease and stroke.
Neuron | 2006
Jennifer M. MacDonald; Margaret G. Beach; Ermelinda Porpiglia; Amy E. Sheehan; Ryan J. Watts; Marc R. Freeman
Neuron-glia communication is central to all nervous system responses to trauma, yet neural injury signaling pathways remain poorly understood. Here we explore cellular and molecular aspects of neural injury signaling in Drosophila. We show that transected Drosophila axons undergo injury-induced degeneration that is morphologically similar to Wallerian degeneration in mammals and can be suppressed by the neuroprotective mouse Wlds protein. Axonal injury elicits potent morphological and molecular responses from Drosophila glia: glia upregulate expression of the engulfment receptor Draper, undergo dramatic changes in morphology, and rapidly recruit cellular processes toward severed axons. In draper mutants, glia fail to respond morphologically to axon injury, and severed axons are not cleared from the CNS. Thus Draper appears to act as a glial receptor for severed axon-derived molecular cues that drive recruitment of glial processes to injured axons for engulfment.
Cancer Cell | 2008
Maresa Caunt; Judy Mak; Wei-Ching Liang; Scott Stawicki; Qi Pan; Raymond K. Tong; Joe Kowalski; Calvin Ho; Hani Bou Reslan; Jed Ross; Leanne Berry; Ian Kasman; Constance Zlot; Zhiyong Cheng; Jennifer Le Couter; Ellen Filvaroff; Greg Plowman; Franklin Peale; Dorothy French; Richard A. D. Carano; Alexander W. Koch; Yan Wu; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri
Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts VEGFC-induced lymphatic endothelial cell migration, but not proliferation, in part independently of VEGF receptor activation. It does not affect established lymphatics in normal adult mice but reduces tumoral lymphangiogenesis and, importantly, functional lymphatics associated with tumors. It also reduces metastasis to sentinel lymph nodes and distant organs, apparently by delaying the departure of tumor cells from the primary tumor. Our results demonstrate that Nrp2, which was originally identified as an axon-guidance receptor, is an attractive target for modulating metastasis.
Neuron | 2006
Eric Hoopfer; Todd McLaughlin; Ryan J. Watts; Oren Schuldiner; Dennis D.M. O'Leary; Liqun Luo
Axon pruning by degeneration remodels exuberant axonal connections and is widely required for the development of proper circuitry in the nervous system from insects to mammals. Developmental axon degeneration morphologically resembles injury-induced Wallerian degeneration, suggesting similar underlying mechanisms. As previously reported for mice, we show that Wlds protein substantially delays Wallerian degeneration in flies. Surprisingly, Wlds has no effect on naturally occurring developmental axon degeneration in flies or mice, although it protects against injury-induced degeneration of the same axons at the same developmental age. By contrast, the ubiquitin-proteasome system is intrinsically required for both developmental and injury-induced axon degeneration. We also show that the glial cell surface receptor Draper is required for efficient clearance of axon fragments during developmental axon degeneration, similar to its function in injury-induced degeneration. Thus, mechanistically, naturally occurring developmental axon pruning by degeneration and injury-induced axon degeneration differ significantly in early steps, but may converge onto a common execution pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Fan Zhang; Zhongshu Tang; Xu Hou; Johan Lennartsson; Yang Li; Alexander W. Koch; Pierre Scotney; Chunsik Lee; Pachiappan Arjunan; Lijin Dong; Anil Kumar; Tuomas T. Rissanen; Bin Wang; Nobuo Nagai; Pierre Fons; Robert N. Fariss; Yongqing Zhang; Eric F. Wawrousek; Ginger Tansey; James Raber; Guo-Hua Fong; Hao Ding; David A. Greenberg; Kevin G. Becker; Jean-Marc Herbert; Andrew D. Nash; Seppo Ylä-Herttuala; Yihai Cao; Ryan J. Watts; Xuri Li
VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases.
Science Translational Medicine | 2011
Jasvinder Atwal; Yongmei Chen; Cecilia Chiu; Deborah L. Mortensen; William J. Meilandt; Yichin Liu; Christopher E. Heise; Kwame Hoyte; Wilman Luk; Yanmei Lu; Kun Peng; Ping Wu; Lionel Rouge; Yingnan Zhang; Robert A. Lazarus; Kimberly Scearce-Levie; Weiru Wang; Yan Wu; Marc Tessier-Lavigne; Ryan J. Watts
A human antibody inhibits BACE1 activity and Aβ peptide production in cultured neurons and in the central nervous system of mouse and monkey. A Trojan Horse Antibody Scales a Mighty Fortress As impenetrable as the walls of ancient Troy, the tight endothelial cell layer of the blood-brain barrier (BBB) allows only a few select molecules to enter the brain. Unfortunately, this highly effective fortress blocks passage of therapeutic antibodies, limiting their usefulness for treating diseases of the brain and central nervous system. Enter Ryan Watts and his team at Genentech with their ambitious dual goal of making a therapeutic antibody against a popular Alzheimer’s disease drug target, the enzyme β-secretase (BACE1), and developing a strategy to boost the amount of this antibody that enters the brain (Atwal et al. and Yu et al.). BACE1 processes the amyloid precursor protein into amyloid-β (Aβ) peptides including those molecular species that aggregate to form the amyloid plaques found in the brains of Alzheimer’s disease patients. By blocking the activity of BACE1, BACE1 inhibitors should reduce production of the aggregation-prone Aβ peptides, thus decreasing amyloid plaque formation and slowing Alzheimer’s disease progression. Although small-molecule inhibitors of BACE1 have been developed and can readily cross the BBB because of their small size, they do not show sufficient specificity and hence may have toxic side effects. Watts envisaged that a better approach to blocking BACE1 activity might be passive immunization with a highly specific anti-BACE1 antibody. So his team engineered an anti-BACE1 antibody that bound to BACE1 with exquisite specificity and blocked its activity (Atwal et al.). The investigators then showed that this antibody could reduce production of aggregation-prone Aβ peptides in cultured primary neurons. Next, Watts and his colleagues injected the antibody into mice and monkeys and demonstrated a sustained decrease in the concentrations of Aβ peptide in the circulation of these animals and to a lesser extent in the brain. The researchers knew that they must find a way to increase the amount of antibody getting into the brain to reduce Aβ peptide concentrations in the brain sufficiently to obtain a therapeutic effect. So Watts teamed up with fellow Genentechie, Mark Dennis, and they devised an ingenious solution (Yu et al.). The Genentech researchers knew that high-affinity antibodies against the transferrin receptor might be able to cross the BBB using a natural process called receptor-mediated transcytosis. However, when they tested their antibody, they found that although it readily bound to the BBB, it could not detach from the transferrin receptor and hence was not released into the brain. So, they made a series of lower-affinity mouse anti-transferrin receptor antibodies and found variants that could cross the BBB by receptor-mediated transcytosis and were released into the mouse brain once they got across the endothelial cell layer. Next, they designed a bispecific mouse antibody with one arm comprising a low-affinity anti-transferrin receptor antibody and the other arm comprising the high-affinity anti-BACE1 antibody that had shown therapeutic promise in their earlier studies. They demonstrated that their bispecific antibody was able to cross the BBB and reach therapeutic concentrations in the mouse brain. They then showed that this bispecific antibody was substantially more effective at reducing Aβ peptide concentrations in the mouse brain compared to the monospecific anti-BACE1 antibody. This elegant pair of papers not only demonstrates the therapeutic potential of an anti-BACE1 antibody for treating Alzheimer’s disease but also provides a strategy worthy of the ancient Greeks that could be applied to other therapeutic antibodies that require safe passage into the human brain. Reducing production of amyloid-β (Aβ) peptide by direct inhibition of the enzymes that process amyloid precursor protein (APP) is a central therapeutic strategy for treating Alzheimer’s disease. However, small-molecule inhibitors of the β-secretase (BACE1) and γ-secretase APP processing enzymes have shown a lack of target selectivity and poor penetrance of the blood-brain barrier (BBB). Here, we have developed a high-affinity, phage-derived human antibody that targets BACE1 (anti-BACE1) and is anti-amyloidogenic. Anti-BACE1 reduces endogenous BACE1 activity and Aβ production in human cell lines expressing APP and in cultured primary neurons. Anti-BACE1 is highly selective and does not inhibit the related enzymes BACE2 or cathepsin D. Competitive binding assays and x-ray crystallography indicate that anti-BACE1 binds noncompetitively to an exosite on BACE1 and not to the catalytic site. Systemic dosing of mice and nonhuman primates with anti-BACE1 resulted in sustained reductions in peripheral Aβ peptide concentrations. Anti-BACE1 also reduces central nervous system Aβ concentrations in mouse and monkey, consistent with a measurable uptake of antibody across the BBB. Thus, BACE1 can be targeted in a highly selective manner through passive immunization with anti-BACE1, providing a potential approach for treating Alzheimer’s disease. Nevertheless, therapeutic success with anti-BACE1 will depend on improving antibody uptake into the brain.