Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Unger is active.

Publication


Featured researches published by Christine Unger.


Mutation Research-reviews in Mutation Research | 2013

In vitro cell migration and invasion assays.

Nina Kramer; Angelika Walzl; Christine Unger; Margit Rosner; Georg Krupitza; Markus Hengstschläger; Helmut Dolznig

Determining the migratory and invasive capacity of tumor and stromal cells and clarifying the underlying mechanisms is most relevant for novel strategies in cancer diagnosis, prognosis, drug development and treatment. Here we shortly summarize the different modes of cell travelling and review in vitro methods, which can be used to evaluate migration and invasion. We provide a concise summary of established migration/invasion assays described in the literature, list advantages, limitations and drawbacks, give a tabular overview for convenience and depict the basic principles of the assays graphically. In many cases particular research problems and specific cell types do not leave a choice for a broad variety of usable assays. However, for most standard applications using adherent cells, based on our experience we suggest to use exclusion zone assays to evaluate migration/invasion. We substantiate our choice by demonstrating that the advantages outbalance the drawbacks e.g. the simple setup, the easy readout, the kinetic analysis, the evaluation of cell morphology and the feasibility to perform the assay with standard laboratory equipment. Finally, innovative 3D migration and invasion models including heterotypic cell interactions are discussed. These methods recapitulate the in vivo situation most closely. Results obtained with these assays have already shed new light on cancer cell spreading and potentially will uncover unknown mechanisms.


Nature Communications | 2015

STAT3 regulated ARF expression suppresses prostate cancer metastasis.

Jan Pencik; Michaela Schlederer; Wolfgang Gruber; Christine Unger; Steven M. Walker; Athena Chalaris; I. Marie; Melanie R. Hassler; Tahereh Javaheri; Osman Aksoy; Jaine K. Blayney; Nicole Prutsch; Anna Skucha; Merima Herac; Oliver H. Krämer; Peter R. Mazal; Florian Grebien; Gerda Egger; Valeria Poli; Wolfgang Mikulits; Robert Eferl; Harald Esterbauer; Richard D. Kennedy; Falko Fend; Marcus Scharpf; Martin Braun; Sven Perner; David E. Levy; Timothy Ian Malcolm; Suzanne D. Turner

Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.


Development | 2009

An in vitro ES cell imprinting model shows that imprinted expression of the Igf2r gene arises from an allele-specific expression bias

Paulina A. Latos; Stefan H. Stricker; Laura Steenpass; Florian M. Pauler; Ru Huang; Basak H. Senergin; Kakkad Regha; Martha V. Koerner; Katarzyna E. Warczok; Christine Unger; Denise P. Barlow

Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles.


British Journal of Cancer | 2011

NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells.

Caroline Vonach; Katharina Viola; Benedikt Giessrigl; Nicole Huttary; Ingrid Raab; R Kalt; Sigurd Krieger; T P N Vo; Sibylle Madlener; Sabine Bauer; Brigitte Marian; M Hämmerle; Nicole Kretschy; Mathias Teichmann; B Hantusch; S Stary; Christine Unger; Mareike Seelinger; A Eger; Robert M. Mader; Walter Jäger; Wolfgang Schmidt; Michael Grusch; Helmut Dolznig; Wolfgang Mikulits; Georg Krupitza

Background:The intravasation of breast cancer into the lymphendothelium is an early step of metastasis. Little is known about the mechanisms of bulky cancer invasion into lymph ducts.Methods:To particularly address this issue, we developed a 3-dimensional co-culture model involving MCF-7 breast cancer cell spheroids and telomerase-immortalised human lymphendothelial cell (LEC) monolayers, which resembles intravasation in vivo and correlated the malignant phenotype with specific protein expression of LECs.Results:We show that tumour spheroids generate ‘circular chemorepellent-induced defects’ (CCID) in LEC monolayers through retraction of LECs, which was induced by 12(S)-hydroxyeicosatetraenoic acid (HETE) secreted by MCF-7 spheroids. This 12(S)-HETE-regulated retraction of LECs during intravasation particularly allowed us to investigate the key regulators involved in the motility and plasticity of LECs. In all, 12(S)-HETE induced pro-metastatic protein expression patterns and showed NF-κB-dependent up-regulation of the mesenchymal marker protein S100A4 and of transcriptional repressor ZEB1 concomittant with down-regulation of the endothelial adherence junction component VE-cadherin. This was in accordance with ∼50% attenuation of CCID formation by treatment of cells with 10 μM Bay11-7082. Notably, 12(S)-HETE-induced VE-cadherin repression was regulated by either NF-κB or by ZEB1 since ZEB1 siRNA knockdown abrogated not only 12(S)-HETE-mediated VE-cadherin repression but inhibited VE-cadherin expression in general.Interpretation:These data suggest an endothelial to mesenchymal transition-like process of LECs, which induces single cell motility during endothelial transmigration of breast carcinoma cells. In conclusion, this study demonstrates that the 12(S)-HETE-induced intravasation of MCF-7 spheroids through LECs require an NF-κB-dependent process of LECs triggering the disintegration of cell–cell contacts, migration, and the generation of CCID.


Oncogene | 2015

IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor–stroma interaction

C Rupp; Martin Scherzer; A Rudisch; Christine Unger; C Haslinger; N Schweifer; M Artaker; H Nivarthi; Richard Moriggl; Markus Hengstschläger; D Kerjaschki; Wolfgang Sommergruber; Helmut Dolznig; Pilar Garin-Chesa

The activated tumor stroma participates in many processes that control tumorigenesis, including tumor cell growth, invasion and metastasis. Cancer-associated fibroblasts (CAFs) represent the major cellular component of the stroma and are the main source for connective tissue components of the extracellular matrix and various classes of proteolytic enzymes. The signaling pathways involved in the interactions between tumor and stromal cells and the molecular characteristics that distinguish normal ‘resting’ fibroblasts from cancer-associated or ‘-activated’ fibroblasts remain poorly defined. Recent studies emphasized the prognostic and therapeutic significance of CAF-related molecular signatures and a number of those genes have been shown to serve as putative therapeutic targets. We have used immuno-laser capture microdissection and whole-genome Affymetrix GeneChip analysis to obtain transcriptional signatures from the activated tumor stroma of colon carcinomas that were compared with normal resting colonic fibroblasts. Several members of the Wnt-signaling pathway and gene sets related to hypoxia, epithelial-to-mesenchymal transition (EMT) and transforming growth factor-β (TGFβ) pathway activation were induced in CAFs. The putative TGFβ-target IGFBP7 was identified as a tumor stroma marker of epithelial cancers and as a tumor antigen in mesenchyme-derived sarcomas. We show here that in contrast to its tumor-suppressor function in epithelial cells, IGFPB7 can promote anchorage-independent growth in malignant mesenchymal cells and in epithelial cells with an EMT phenotype when IGFBP7 is expressed by the tumor cells themselves and can induce colony formation in colon cancer cells co-cultured with IGFBP7-expressing CAFs by a paracrine tumor–stroma interaction.


Advanced Drug Delivery Reviews | 2014

Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development

Christine Unger; Nina Kramer; Angelika Walzl; Martin Scherzer; Markus Hengstschläger; Helmut Dolznig

Anti-cancer drug development is inefficient, mostly due to lack of efficacy in human patients. The high fail rate is partly due to the lack of predictive models or the inadequate use of existing preclinical test systems. However, progress has been made and preclinical models were improved or newly developed, which all account for basic features of solid cancers, three-dimensionality and heterotypic cell interaction. Here we give an overview of available in vivo and in vitro models of cancer, which meet the criteria of being 3D and mirroring human tumor-stroma interactions. We only focus on drug response models without touching models for pharmacokinetic and dynamic, toxicity or delivery aspects.


Seminars in Cancer Biology | 2015

Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment

Mira Stadler; Stefanie Walter; Angelika Walzl; Nina Kramer; Christine Unger; Martin Scherzer; Daniela Unterleuthner; Markus Hengstschläger; Georg Krupitza; Helmut Dolznig

Solid cancers are not simple accumulations of malignant tumor cells but rather represent complex organ-like structures. Despite a more chaotic general appearance as compared to the highly organized setup of healthy tissues, cancers still show highly differentiated structures and a close interaction with and dependency on the interwoven connective tissue. This complexity within cancers is not known in detail at the molecular level so far. The first part of this article will shortly describe the technology and strategies to quantify and dissect the heterogeneity in human solid cancers. Moreover, there is urgent need to better understand human cancer biology since the development of novel anti-cancer drugs is far from being efficient, predominantly due to the scarcity of predictive preclinical models. Hence, in vivo and in vitro models were developed, which better recapitulate the complexity of human cancers, by their intrinsic three-dimensional nature and the cellular heterogeneity and allow functional intervention for hypothesis testing. Therefore, in the second part 3D in vitro cancer models are presented that analyze and depict the heterogeneity in human cancers. Advantages and drawbacks of each model are highlighted and their suitability to preclinical drug testing is discussed.


Journal of Biomolecular Screening | 2014

The Resazurin Reduction Assay Can Distinguish Cytotoxic from Cytostatic Compounds in Spheroid Screening Assays

Angelika Walzl; Christine Unger; Nina Kramer; Daniela Unterleuthner; Martin Scherzer; Markus Hengstschläger; Dagmar Schwanzer-Pfeiffer; Helmut Dolznig

Spheroid-based cellular screening approaches represent a highly physiologic experimental setup to identify novel anticancer drugs and an innovative preclinical model to reduce the high failure rate of anticancer compounds in clinical trials. The resazurin reduction (RR) assay, known as the alamarBlue or CellTiter-Blue assay, is frequently used to determine cell viability/proliferation capacity in eukaryotic cells. Whether this assay is applicable to assess viability in multicellular spheroids has not been evaluated. We analyzed the RR assay to measure cytotoxic and/or cytostatic responses in tumor cell spheroids compared with conventional 2D cultures. We found that tight cell-cell interactions in compact spheroids hamper resazurin uptake and its subsequent reduction to resorufin, leading to lowered reduction activity in relation to the actual cellular health/cell number. Treatment with staurosporine disrupted close cell-cell contacts, which increased resazurin reduction compared with untreated controls. Loss of tight junctions by trypsinization or addition of EGTA or EDTA restored high resazurin reduction rates in untreated spheroids. In conclusion, the RR assay is unsuited to quantitatively measure cellular health/cell number in compact spheroids. However, it can be used to distinguish between cytotoxic versus cytostatic compounds in spheroids. Restoration of the correlation of cell viability/number to resazurin reduction capacity can be achieved by disruption of tight junctions.


Journal of Cell Science | 2017

Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses

Angelika Riedl; Michaela Schlederer; Karoline Pudelko; Mira Stadler; Stefanie Walter; Daniela Unterleuthner; Christine Unger; Nina Kramer; Markus Hengstschläger; Lukas Kenner; Dagmar Pfeiffer; Georg Krupitza; Helmut Dolznig

ABSTRACT Three-dimensional (3D) cancer models are used as preclinical systems to mimic physiologic drug responses. We provide evidence for strong changes of proliferation and metabolic capacity in three dimensions by systematically analyzing spheroids of colon cancer cell lines. Spheroids showed relative lower activities in the AKT, mammalian target of rapamycin (mTOR) and S6K (also known as RPS6KB1) signaling pathway compared to cells cultured in two dimensions. We identified spatial alterations in signaling, as the level of phosphorylated RPS6 decreased from the spheroid surface towards the center, which closely coordinated with the tumor areas around vessels in vivo. These 3D models displayed augmented anti-tumor responses to AKT–mTOR–S6K or mitogen-activated protein kinase (MAPK) pathway inhibition compared to those in 2D models. Inhibition of AKT–mTOR–S6K resulted in elevated ERK phosphorylation in 2D culture, whereas under these conditions, ERK signaling was reduced in spheroids. Inhibition of MEK1 (also known as MAP2K1) led to decreased AKT–mTOR–S6K signaling in 3D but not in 2D culture. These data indicate a distinct rewiring of signaling in 3D culture and during treatment. Detached tumor-cell clusters in vessels, in addition to circulating single tumor cells, play a putative role in metastasis in human cancers. Hence, the understanding of signaling in spheroids and the responses in the 3D models upon drug treatment might be beneficial for anti-cancer therapies. Summary: Colon cancer spheroids have decreased AKT–mTOR–S6K activity, spatial differences in signaling intensity as well as differing responses upon inhibition of the AKT–mTOR–S6K or MAPK axes in comparison with 2D cultures.


Investigational New Drugs | 2015

Three-dimensional and co-culture models for preclinical evaluation of metal-based anticancer drugs

Ekaterina Schreiber-Brynzak; Erik Klapproth; Christine Unger; Irene Lichtscheidl-Schultz; Simone Göschl; Sarah Schweighofer; Robert Trondl; Helmut Dolznig; Michael A. Jakupec; Bernhard K. Keppler

SummaryBackground Hypoxic and necrotic regions that accrue within solid tumors in vivo are known to be associated with metastasis formation, radio- and chemotherapy resistance, and drug metabolism. Therefore, integration of these tumor characteristics into in vitro drug screening models is advantageous for any reliable investigation of the anticancer activity of novel drug candidates. In general, usage of cell culture models with in vivo like characteristics has become essential in preclinical drug studies and allows evaluation of complex problems such as tumor selectivity and anti-invasive properties of the drug candidates. Materials and Methods In this study, we investigated the anticancer activity of clinically approved, investigational and experimental drugs based on platinum (cisplatin, oxaliplatin and KP1537), gallium (KP46), ruthenium (KP1339) and lanthanum (KP772) in different cell culture models such as monolayers, multicellular spheroids, as well as invasion and metastasis models. Results Application of the Alamar Blue assay to multicellular spheroids and a spheroid-based invasion assay resulted in an altered rating of compounds with regard to their cytotoxicity and ability to inhibit invasion when compared with monolayer-based cytotoxicity and transwell assays. For example, the gallium-based drug candidate KP46 showed in spheroid cultures significantly enhanced properties to inhibit protrusion formation and fibroblast mediated invasiveness, and improved cancer cell selectivity. Conclusion Taken together, our results demonstrate the advantages of spheroid-based assays and underline the necessity of using different experimental models for reliable preclinical investigations assessing and better predicting the anticancer potential of new compounds.

Collaboration


Dive into the Christine Unger's collaboration.

Top Co-Authors

Avatar

Helmut Dolznig

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nina Kramer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Georg Krupitza

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Scherzer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Benedikt Giessrigl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Mareike Seelinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Melanie R. Hassler

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Szekeres

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge