Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Vandervoort is active.

Publication


Featured researches published by Christine Vandervoort.


Archives of Environmental Contamination and Toxicology | 1994

Contaminants in fishes from Great Lakes-influenced sections and above dams of three Michigan rivers. II: Implications for health of mink

John P. Giesy; David A. Verbrugge; R. A. Othout; William W. Bowerman; Miguel A. Mora; Paul D. Jones; John L. Newsted; Christine Vandervoort; S. N. Heaton; Richard J. Aulerich; S. J. Bursian; James P. Ludwig; G. A. Dawson; Timothy J. Kubiak; D. A. Best; Donald E. Tillitt

Populations of mink (Mustela vison) have declined in many areas of the world. Such declines have been linked to exposures to synthetic, halogenated hydrocarbons. In the Great Lakes region, mink are fewer in areas along the shore of the Great Lakes and their tributaries where mink have access to fish from the Great Lakes. Recently, there has been discussion of the relative merits of passage of fishes around hydroelectric dams on rivers in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on mink, which could consume such fishes from above or below dams on the rivers. Concentrations of organochlorine insecticides, polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachloridibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury were measured in composite samples of fishes from above or below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Concentrations of organochlorine insecticides, PCBs, and TCDD-EQ were all greater in fishes from below the dams than those from above. Concentrations of neither organochlorine insecticides nor mercury in fishes are currently a risk to mink above or below the dams. All of the species of fishes collected from downstream of the dams contained concentrations of PCBs and TCDD-EQ, which represent a hazard to mink. The hazard index for PCBs was less than one for the average of all species from the upstream reaches of the Manistee and Au Sable Rivers, but not the Muskegon. The hazard index (concentration in fish/NOAEC) was greater than 1 for all of the species collected from below the dams, in all three rivers. The greatest hazard index was observed for carp (Cyprinus carpio) downstream on the Muskegon River. Because the concentrations of PCBs used in the hazard assessment were corrected for relative toxic potencies, the hazard ratios based on PCBs should be similar to those based on TCDD-EQ. This was found to be true. Thus, either total PCBs or TCDD-EQ could be used as the critical toxicant in the hazard assessment. However, if uncorrected concentrations of PCBs, expressed as Aroclors®, were used in the hazard assessment, the toxicity of the weathered mixture would have been underestimated by approximately five-fold, and, in that instance, TCDD-EQ would be the critical contaminant for the hazard assessment. The average maximum allowable percentage of fish from above the dams, which would result in no observable adverse effects of TCDD-EQ, was 70%. Based on the average TCDD-EQ concentrations in the fishes, an average of 8.6% of the diet could be made up of fishes from below dams on the rivers. The most restrictive daily allowable intakes were for carp on the Muskegon and steelhead trout (Onchorhyncus mykiss) on the Manistee Rivers. Only 2.7% of the diet could be made up of these two species from influenced portion of the Au Sable River, they would be exposed to 390 μg PCBs and 8.55 ng of TCDD-EQ per day, respectively (Giesy et al. 1994b). Thus, it would take 15.1 or 77 days for mink to receive their total annual dose of PCBs or TCDD-EQ, respectively. At least for chinook salmon, the critical contaminant for the purposes of hazard assessment would be total concentrations of PCBs. Consuming chinook salmon for as little as 2 weeks would deliver the annual allowable dose of PCBs to mink.


Archives of Environmental Contamination and Toxicology | 1994

Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers. I: Concentrations of organo chlorine insecticides, polychlorinated biphenyls, dioxin equivalents, and mercury

John P. Giesy; David A. Verbrugge; R. A. Othout; William W. Bowerman; Miguel A. Mora; Paul D. Jones; John L. Newsted; Christine Vandervoort; S. N. Heaton; Richard J. Aulerich; S. J. Bursian; James P. Ludwig; Matthew E. Ludwig; G. A. Dawson; Timothy J. Kubiak; D. A. Best; Donald E. Tillitt

Fishes of the Great Lakes contain hazardous chemicals such as synthetic halogenated hydrocarbons and metals. These fish can move from the lakes into the Great Lakes tributaries of Michigan. In doing so, they transport concentrationsof contaminants which may represent a risk to wildlife. Concentrations of mercury (Hg), total polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), total DDT complex, aldrin, endrin, dieldrin, heptachlor, heptachlor epoxide, lindane, hexachlorobenzene, cis-chlordane, oxychlordane, endosulfan-I, methoxychlor, trans-chlordane, and trans-nonachlor were determined in composite samples of fishes from above and below Michigan hydroelectric dams, which separate the fishes which have access to the Great Lakes from fishes that do not. Mean concentrations of total PCBs, TCDD-EQ, DDT, and most of the other pesticides were greater in composite samples of six species of fishes from below than above the dams on the Au Sable, Manistee, and Muskegon Rivers. Concentrations of mercury, were the same or greater above the dams than below. However, this difference was statistically significant only on the Au Sable. Mercury concentrations ranged from less than 0.05 mg/kg to 0.73 mg Hg/kg, ww. Total concentrations of PCBs ranged from 0.02 to 1.7 mg/kg, ww. Concentrations of 2,3,7,8-tetrachlordibenzo-p-dioxin equivalents varied among fishes and locations. The concentrations of TCDD-EQ ranged from 2.4 to 71 μg/kg, ww, with concentrations in carp being the greatest. Concentrations of TCDD-EQ were greater than the concentrations which would be expected to occur, due solely to the presence of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and technical mixtures of PCBs.


Journal of Economic Entomology | 2009

Curative Activity of Insecticides Against Plum Curculio (Coleoptera: Curculionidae) in Tart Cherries

Eric J. Hoffmann; Christine Vandervoort; John C. Wise

ABSTRACT Tart cherry, Prunus cerasus L. variety Montmorency, fruit were infested with plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), and treated with insecticides to target late instars, neonates, and eggs. The organophosphates azinphos-methyl and phosmet and the neonicotinoid thiamethoxam reduced larval emergence rates by >90% for all life stage targets; after >30 d, few surviving larvae were found inside fruit. Acetamiprid and thiacloprid also had curative activity and yielded >75% reductions in emergence and few surviving larvae in the fruit after >30 d. The juvenile hormone analog pyriproxyfen reduced larval emergence, but 66% of fruit that was treated to target late-instars still had live larvae inside of them after >30 d. Novaluron, chlorantraniliprole, and esfenvalerate had no curative activity. Indoxacarb had limited curative activity, and all targeted life stages had larval emergence. Internal and external residues were analyzed and are discussed in relation to their penetration and curative potential. The curative activity of azinphos-methyl has played an important role in meeting federal standards for infestation-free tart cherries at processing. Regulatory changes are eliminating the use of this compound, and new integrated pest management programs for plum curculio will need to address the loss of azinphos-methyls curative activity.


Journal of Economic Entomology | 2011

Rainfastness and Residual Activity of Insecticides to Control Japanese Beetle (Coleoptera: Scarabaeidae) in Grapes

Daniel Hulbert; Rufus Isaacs; Christine Vandervoort; John C. Wise

ABSTRACT Field-based bioassays and residue profile analysis were used to determine the relative toxicity, rainfastness, and field degradation over time of five insecticides from five insecticide classes on adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), in grapes, Vitis labrusca L. Bioassays assessed Japanese beetle condition as alive, knockdown, or immobile when exposed for 24 h or 7-d field-aged residues of phosmet, carbaryl, bifenthrin, thiamethoxam, or indoxacarb after 0, 12.7, or 25.4 mm of rain had been simulated. We found that the two most toxic insecticides to Japanese beetle were phosmet and carbaryl, followed by bifenthrin, thiamethoxam, and then indoxacarb. The efficacy of phosmet decreased because of rainfall, but not because of field aging. The efficacy of carbaryl decreased because of rainfall and field aging. The efficacies of bifenthrin and thiamethoxam were not affected by rainfall but decreased because of field aging. The efficacy of indoxacarb was not affected by rainfall or field aging. This study will help vineyard managers make informed decisions on when reapplications of insecticides are needed with the aim of improving integrated pest management programs.


Pest Management Science | 2011

Comparison of foliar and soil formulations of neonicotinoid insecticides for control of potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae), in wine grapes.

Steven Van Timmeren; John C. Wise; Christine Vandervoort; Rufus Isaacs

BACKGROUND The potential of systemic neonicotinoid insecticides to control potato leafhopper, Empoasca fabae (Harris), a damaging pest of wine grapes in the eastern United States, was investigated. Soil or foliar applications were made to potted or field-grown vines, and the response of leafhoppers was determined in clip cages over the following month on young or mature leaves. RESULTS Foliar application of imidacloprid caused immediate and long-lasting reductions in E. fabae survival on both leaf ages, whereas the activity of soil-applied imidacloprid was delayed. Clothianidin, imidacloprid and thiamethoxam all provided long-lasting reduction in leafhopper survival on young and mature foliage when applied through either delivery route. However, the percentage of moribund nymphs was significantly greater on foliar-treated vines and increased over time in mature and immature leaves compared with soil-treated vines. Residue analysis of foliar-applied imidacloprid showed an 89% decline in mature leaves from day 1 to day 27, and a 98% decline in immature leaves over the same time period. Comparison of soil-applied clothianidin, imidacloprid and thiamethoxam in field-grown vines showed significant reduction in E. fabae only on mature leaves of vines treated with thiamethoxam. CONCLUSIONS Neonicotinoids can control E. fabae in small vines, even in rapidly expanding foliage where this pest causes greatest injury. Soil application provides superior long-term vine protection because declining residues on foliar-treated vines lead to suboptimal activity within 2-3 weeks. Vineyard managers of susceptible cultivars may take advantage of this approach to E. fabae management by using foliar applications of the three neonicotinoids tested here, or by using soil-applied thiamethoxam.


Pest Management Science | 2014

Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies.

Srđan G. Aćimović; Anthony H. VanWoerkom; Pablo Reeb; Christine Vandervoort; Thomas Garavaglia; Bert M. Cregg; John C. Wise

BACKGROUND Pesticide use in orchards creates drift-driven pesticide losses which contaminate the environment. Trunk injection of pesticides as a target-precise delivery system could greatly reduce pesticide losses. However, pesticide efficiency after trunk injection is associated with the underinvestigated spatial and temporal distribution of the pesticide within the tree crown. This study quantified the spatial and temporal distribution of trunk-injected imidacloprid within apple crowns after trunk injection using one, two, four or eight injection ports per tree. RESULTS The spatial uniformity of imidacloprid distribution in apple crowns significantly increased with more injection ports. Four ports allowed uniform spatial distribution of imidacloprid in the crown. Uniform and non-uniform spatial distributions were established early and lasted throughout the experiment. The temporal distribution of imidacloprid was significantly non-uniform. Upper and lower crown positions did not significantly differ in compound concentration. Crown concentration patterns indicated that imidacloprid transport in the trunk occurred through radial diffusion and vertical uptake with a spiral pattern. CONCLUSION By showing where and when a trunk-injected compound is distributed in the apple tree canopy, this study addresses a key knowledge gap in terms of explaining the efficiency of the compound in the crown. These findings allow the improvement of target-precise pesticide delivery for more sustainable tree-based agriculture.


Journal of Economic Entomology | 2009

Curative Activity of Insecticides on Rhagoletis pomonella (Diptera: Tephritidae) in Apples

John C. Wise; Ryan Vanderpoppen; Christine Vandervoort

ABSTRACT Field-based experiments were used to determine the lethal activity of insecticides on apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), eggs and larvae in apple (Malis spp.) fruit. The organophosphates azinphosmethyl and phosmet and the neonicotinoids thiacloprid, acetamiprid, clothianidin, and thiamethoxam showed significant curative activity on the apple maggot postinfestation, when applied topically to apple fruit 24 h postharvest. Of the compounds tested, only phosmet showed significant curative activity on apple maggot when applied 14 d postharvest. The pyrethroid esfenvalerate, oxadiazine indoxacarb, anthranilic diamide chlorantraniliprole, and spinosyns spinosad and spinetoram did not show activity on apple maggot eggs and larvae in fruit. Residue profiles showed that for most compounds, the majority (>85%) of residues were found in the skin and the outside 2 mm of the apple flesh. For the neonicotinoid compounds, however, substantial portions of residues were found to penetrate in and beyond the outer flesh regions, and the total flesh residue recoveries were generally greater than those from the skin. Residues of azinphosmethyl and phosmet were detected in all three flesh regions, with the largest proportions recovered from the skin.


Journal of Economic Entomology | 2007

Lethal and sublethal activities of imidacloprid contribute to control of adult Japanese beetle in blueberries

John C. Wise; Christine Vandervoort; Rufus Isaacs

Abstract Field-based bioassays and residue profile analysis were used to determine the relative importance of lethal and sublethal effects of imidacloprid on adult Japanese beetle, Popillia japonica Newman, in blueberries, Vaccinium corymbosum L. Field-based bioassays assessed adult mortality and knockdown, and fruit and leaf injury from Japanese beetles exposed to 4-h and 7-d field-aged residues of imidacloprid, and the conventional insecticides azinphosmethyl and esfenvalerate. Azinphosmethyl and imidacloprid caused high levels of mortality when beetles were exposed to blueberry shoots with ripe fruit 4 h postapplication, and all compounds protected blueberry fruit and foliage from beetle feeding. Azinphosmethyl and esfenvalerate caused significant Japanese beetle mortality when adults were exposed to blueberry shoots 7 d postapplication, whereas imidacloprid residues caused effects that protected leaves, although not of ripe fruit. When beetles were exposed to shoots with immature green fruit, relatively more leaf feeding and mortality were observed, suggesting that earlier treatment timings may be most effective for systemic neonicotinoids. Japanese beetle mortality was highly correlated with imidacloprid fruit and leaf surface residues, whereas sublethal feeding deterrent effects were observed after the surface residues diminished. The value of the plant-insect-chemistry model for describing the spatial and temporal dimensions of insecticide modes of activity is discussed in terms of optimizing crop protection.


Journal of Economic Entomology | 2012

Rainfastness of Insecticides Used to Control Japanese Beetle in Blueberries

Daniel Hulbert; Pablo Reeb; Rufus Isaacs; Christine Vandervoort; Susan Erhardt; John C. Wise

ABSTRACT Field-based bioassays were used to determine the relative impact of rainfall on the relative toxicity of four insecticides, phosmet, carbaryl, zeta-cypermethrin, or imidacloprid, from different chemical classes on adult Japanese beetles, Popillia japonica Newman, in highbush blueberries, Vaccinium corymbosum L. Bioassays were set up 24 h after spraying occurred and Japanese beetle condition was scored as alive, knockdown or immobile 1, 24, and 48 h after bioassay setup. All insecticides were significantly more toxic than the untreated control and zeta-cypermethrin consistently had the greatest toxic effect against the Japanese beetles. All insecticides experienced a decrease in efficacy after simulated rainfall onto treated blueberry shoots, although the efficacy of zetacypermethrin was the least affected by rainfall. This study will help blueberry growers make informed decisions on when reapplications of insecticides are needed in the field with the aim of improving integrated pest management (IPM).


Plant Disease | 2016

Seasonal and Cross-Seasonal Timing of Fungicide Trunk Injections in Apple Trees to Optimize Management of Apple Scab

Srđan G. Aćimović; Anthony H. VanWoerkom; Thomas Garavaglia; Christine Vandervoort; George W. Sundin; John C. Wise

To optimize the number and timing of trunk injections for season-long control of apple scab (Venturia inaequalis), we evaluated 1 to 2 and 4 seasonal and cross-seasonal injections of potassium phosphites and synthetic fungicides and quantified residues in leaves and fruit. Phosphites accumulated in the canopy at the highest concentrations, aligned well in time with scab suppression, and gave better leaf scab control of 41.8 to 73.5% than propiconazole (16.9 to 51.5%) or cyprodinil + difenoconazole (5.4 to 17.4%). More injections of phosphites controlled leaf scab better than fewer (23.7% versus 48.2%), and more fungicide injections resulted in 21.9 to 51.1% better leaf scab control than fewer. Leaf scab control with phosphites was only 3.2 to 13.9% better with 4 cross-seasonal compared with 4 seasonal injections, while 1 to 2 seasonal compared with 1 to 2 cross-seasonal injections improved scab control only for 4.2 to 22.1%. On shoots, injected phosphites provided comparable or for 4.4 to 10.5% and 22.3 to 41.4% better scab control than spray standards. On fruit, injected phosphites slightly improved control compared with sprayed phosphites or the sprayed fungicide standard (33.4 to 40.8%). Two seasonal injections of phosphites controlled shoot scab 5.7% better than 9 spray applications. Five sprays of cyprodinil + difenoconazole controlled scab better than their injections. Fruit residues of phosphites reached 2.8 ppm and declined in all treatments except in 2 seasonal injections and phosphite sprays. Cyprodinil and difenoconazole fruit residues reached 0.02 and 0.07 ppm and declined sharply toward the end of the season. These were far below the United States, Codex, and EU MRL-s of 1, 0.8, and 0.5 ppm for difenoconazole, and 1.7, 2, and 1 ppm for cyprodinil, respectively.

Collaboration


Dive into the Christine Vandervoort's collaboration.

Top Co-Authors

Avatar

John C. Wise

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Rufus Isaacs

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Whalon

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Hulbert

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald E. Tillitt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John L. Newsted

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge