Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Wise is active.

Publication


Featured researches published by John C. Wise.


Pest Management Science | 2008

Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity.

David Mota-Sanchez; John C. Wise; Ryan Vander Poppen; Larry J. Gut; Robert M. Hollingworth

BACKGROUND The codling moth is one of the principal pests of apple in the world. Resistance monitoring is crucial to the effective management of resistance in codling moth. Three populations of codling moth in neonate larvae were evaluated for resistance to seven insecticides via diet bioassays, and compared with a susceptible population. In addition, apple plots were treated with labeled field rate doses of four insecticides. Treated fruit were exposed to neonate larvae of two populations from commercial orchards. RESULTS Two populations of codling moth expressed two- and fivefold resistance to azinphos-methyl, seven- and eightfold resistance to phosmet, six- and tenfold resistance to lambda-cyhalothrin, 14- and 16-fold resistance to methoxyfenozide and sixfold resistance to indoxacarb, but no resistance to acetamiprid and spinosad. The impact of the resistance to azinphos-methyl, measured as fruit damage, increased as the insecticide residues aged in the field. In contrast, fruit damage in methoxyfenozide- and lambda-cyhalothrin-treated fruit was observed earlier for resistant codling moth. No differences in efficacy were found for acetamiprid. CONCLUSIONS Broad-spectrum insecticide resistance was detected for codling moth. Resistance to azinphos-methyl, lambda-cyhalothrin and methoxyfenozide was associated with reduced residual activity in the field. Broad-spectrum resistance presents serious problems for management of the codling moth in Michigan.


Pest Management Science | 2009

Lethal and sublethal effects of chlorantraniliprole on three species of Rhagoletis fruit flies (Diptera: Tephritidae).

Luís A. F. Teixeira; Larry J. Gut; John C. Wise; Rufus Isaacs

BACKGROUND Chlorantraniliprole formulated as a 350 g kg(-1) WG (Altacor 35WG) for management of apple maggot Rhagoletis pomonella (Walsh), blueberry maggot R. mendax Curran and cherry fruit fly R. cingulata (Loew) (Diptera: Tephritidae) was evaluated in laboratory assays and field trials. RESULTS A tarsal contact toxicity bioassay showed that a surface residue of 500 mg L(-1) of chlorantraniliprole caused significantly higher mortality of male and female flies of all species compared with a control. Male apple maggot and blueberry maggot mortality was significantly higher than that for females, but there was similar mortality of male and female cherry fruit flies. An ingestion toxicity bioassay showed that 500 mg L(-1) of chlorantraniliprole in diet caused significantly higher mortality of male and female flies of all species than the control, but there were no significant differences among the sexes. Delayed egglaying by females that had ingested chlorantraniliprole was found, but there were no significant sublethal effects on either the number of eggs laid or the egg hatch. Field trials with apple maggot and cherry fruit fly showed that protection of fruit by chlorantraniliprole was comparable with that of standard broad-spectrum insecticides. CONCLUSIONS The present data indicate that chlorantraniliprole has suppressant activity against Rhagoletis fruit flies, preventing fruit infestation primarily through direct lethal effects.


Frontiers in Plant Science | 2015

Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

Srd̄an G. Aćimović; Quan Zeng; Gayle C. McGhee; George W. Sundin; John C. Wise

Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1–2 apple tree injections of either streptomycin, potassium phosphites (PH), or acibenzolar-S-methyl (ASM), significant reduction of blossom and shoot blight symptoms was observed compared to water injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2, and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR) under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.


Journal of Economic Entomology | 2009

Curative Activity of Insecticides Against Plum Curculio (Coleoptera: Curculionidae) in Tart Cherries

Eric J. Hoffmann; Christine Vandervoort; John C. Wise

ABSTRACT Tart cherry, Prunus cerasus L. variety Montmorency, fruit were infested with plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), and treated with insecticides to target late instars, neonates, and eggs. The organophosphates azinphos-methyl and phosmet and the neonicotinoid thiamethoxam reduced larval emergence rates by >90% for all life stage targets; after >30 d, few surviving larvae were found inside fruit. Acetamiprid and thiacloprid also had curative activity and yielded >75% reductions in emergence and few surviving larvae in the fruit after >30 d. The juvenile hormone analog pyriproxyfen reduced larval emergence, but 66% of fruit that was treated to target late-instars still had live larvae inside of them after >30 d. Novaluron, chlorantraniliprole, and esfenvalerate had no curative activity. Indoxacarb had limited curative activity, and all targeted life stages had larval emergence. Internal and external residues were analyzed and are discussed in relation to their penetration and curative potential. The curative activity of azinphos-methyl has played an important role in meeting federal standards for infestation-free tart cherries at processing. Regulatory changes are eliminating the use of this compound, and new integrated pest management programs for plum curculio will need to address the loss of azinphos-methyls curative activity.


Archive | 2009

A Systems Approach to IPM Integration, Ecological Assessment and Resistance Management in Tree Fruit Orchards

John C. Wise; Mark E. Whalon

Twentieth century Integrated Pest Management (IPM) was indisputably marked by the dominance of organophosphate (OP) insecticides for pest control in U.S., European, and Australasia specialty crop production (Perry et al. 1998, Ware and Whitecre 2004). Even though this early IPM period brought forth the concepts of economic thresholds, and robust pest monitoring and modeling (i.e. synthetic pheromones, traps, computers, systems engineering, etc.), once a control action was deemed necessary, the application of a lethal agent to kill the target pest followed before injury could occur (Metcalf 1980). This approach was successful in part because most conventional broad-spectrum insecticides, regardless of chemical class, carried a similar set of performance attributes, as all were fast-acting contact nerve poisons. Thus, the success of the organophosphates, carbamates and synthetic pyrethroids led to a narrow concept of pest control, and reduced the perceived need for scientific investigation for anything beyond the determination of acute toxic effects of insecticides on the target pest and beneficials. One notable exception to this concept was the emergence of pheromone-mediated control, which provided important new avenues in specialty crop IPM beyond chemical control tactics, and is likely to have expanded application in the twenty-first century (Gut et al. 2004).


Journal of Economic Entomology | 2011

Rainfastness and Residual Activity of Insecticides to Control Japanese Beetle (Coleoptera: Scarabaeidae) in Grapes

Daniel Hulbert; Rufus Isaacs; Christine Vandervoort; John C. Wise

ABSTRACT Field-based bioassays and residue profile analysis were used to determine the relative toxicity, rainfastness, and field degradation over time of five insecticides from five insecticide classes on adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), in grapes, Vitis labrusca L. Bioassays assessed Japanese beetle condition as alive, knockdown, or immobile when exposed for 24 h or 7-d field-aged residues of phosmet, carbaryl, bifenthrin, thiamethoxam, or indoxacarb after 0, 12.7, or 25.4 mm of rain had been simulated. We found that the two most toxic insecticides to Japanese beetle were phosmet and carbaryl, followed by bifenthrin, thiamethoxam, and then indoxacarb. The efficacy of phosmet decreased because of rainfall, but not because of field aging. The efficacy of carbaryl decreased because of rainfall and field aging. The efficacies of bifenthrin and thiamethoxam were not affected by rainfall but decreased because of field aging. The efficacy of indoxacarb was not affected by rainfall or field aging. This study will help vineyard managers make informed decisions on when reapplications of insecticides are needed with the aim of improving integrated pest management programs.


Journal of Insect Science | 2008

Ovicidal activity of organophosphate, oxadiazine, neonicotinoid and insect growth regulator chemistries on northern strain plum curculio, Conotrachelus nenuphar

Eric J. Hoffmann; Samantha M. Middleton; John C. Wise

Abstract An in vitro method was developed for assessing ovicidal effects of the organophosphate azinphos-methyl, the neonicotioids thiacloprid, thiamethoxam and clothianidin, the oxadiazine indoxacarb and the insect growth regulators novaluron and pyriproxifen on the plum curculio, Conotrachelus nenuphar (Herbst)(Coleoptera: Curculionidae). The baseline survivorship of this method was 88 percent. Plum curculio eggs were most sensitive to azinphos-methyl. Thiacloprid, clothianidin and the chitin synthesis inhibitor, novaluron, had LC50 values below 100 ppm. Thiamethoxam, indoxacarb and pyriproxifen were not ovicidal at 100 ppm. Octanol-water partitioning coefficients, log Kow, appeared to be an important indicator of ovicidal activity within the neonicotinoids. This new bioassay method eliminates the confounding of the insect-chemical and plant-chemical interactions and the results highlight the utility of a post-infestation curative approach to plum curculio management.


Pest Management Science | 2011

Comparison of foliar and soil formulations of neonicotinoid insecticides for control of potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae), in wine grapes.

Steven Van Timmeren; John C. Wise; Christine Vandervoort; Rufus Isaacs

BACKGROUND The potential of systemic neonicotinoid insecticides to control potato leafhopper, Empoasca fabae (Harris), a damaging pest of wine grapes in the eastern United States, was investigated. Soil or foliar applications were made to potted or field-grown vines, and the response of leafhoppers was determined in clip cages over the following month on young or mature leaves. RESULTS Foliar application of imidacloprid caused immediate and long-lasting reductions in E. fabae survival on both leaf ages, whereas the activity of soil-applied imidacloprid was delayed. Clothianidin, imidacloprid and thiamethoxam all provided long-lasting reduction in leafhopper survival on young and mature foliage when applied through either delivery route. However, the percentage of moribund nymphs was significantly greater on foliar-treated vines and increased over time in mature and immature leaves compared with soil-treated vines. Residue analysis of foliar-applied imidacloprid showed an 89% decline in mature leaves from day 1 to day 27, and a 98% decline in immature leaves over the same time period. Comparison of soil-applied clothianidin, imidacloprid and thiamethoxam in field-grown vines showed significant reduction in E. fabae only on mature leaves of vines treated with thiamethoxam. CONCLUSIONS Neonicotinoids can control E. fabae in small vines, even in rapidly expanding foliage where this pest causes greatest injury. Soil application provides superior long-term vine protection because declining residues on foliar-treated vines lead to suboptimal activity within 2-3 weeks. Vineyard managers of susceptible cultivars may take advantage of this approach to E. fabae management by using foliar applications of the three neonicotinoids tested here, or by using soil-applied thiamethoxam.


Journal of Insect Science | 2011

Novaluron causes reduced egg hatch after treating adult codling moths, Cydia pomenella: Support for transovarial transfer

Soo Hoon S Kim; John C. Wise; Ayhan Gökçe; Mark E. Whalon

Abstract The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a primary pest of apples throughout the United States. Reliance on broad spectrum organophosphates has been declining with the slated cancellation and has shifted towards narrow spectrum insecticides. Novaluron, a chitin synthesis inhibitor, has primarily been used for its ovicidal and larvacidal activities. However, recent studies have demonstrated a transovarial effect after exposure to adults. The effects of novaluron were studied to determine if reduced egg hatch occurs after exposure of different sexes to this compound. Effects of this compound through horizontal transfer were also compared with a topical application to C. pomonella eggs. Results from independent exposure of different sexes to novaluron were different than the control for all three exposure types; male only, female only, and both treated. The horizontal transfer experiment yielded no significant difference while the topical application of novaluron on eggs showed significantly lower egg hatch. Although novaluron has no direct toxicity to adults, the results of this study demonstrate that the delayed lethal activity of this compound reduces hatching of eggs laid by treated adults. Along with the direct ovicidal and larvicidal properties of novaluron, the delayed lethal activity provides an important contribution to the overall control seen in the field.


Journal of Economic Entomology | 2010

Activity of Broad-Spectrum and Reduced-Risk Insecticides on Various Life Stages of Cranberry Fruitworm (Lepidoptera: Pyralidae) in Highbush Blueberry

John C. Wise; Paul E. Jenkins; Ryan Vander Poppen; Rufus Isaacs

ABSTRACT Laboratory and semifield bioassays were conducted to determine the life-stage activity of insecticides for controlling cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a key lepidopteran pest of highbush blueberry, Vaccinium corymbosum L. The organophosphates azinphosmethyl and phosmet, the pyrethroid esfenvalerate, and the carbamate methomyl were lethal to all life stages. The neonicotinoids thiacloprid and acetamiprid demonstrated strong larvicidal and ovicidal activity but were somewhat weaker adulticides than the conventional broad-spectrum compounds. Bacillus thuringiensis, indoxacarb, and emamectin benzoate were shown to control A. vacinii primarily through their larvicidal activity. Spinosad was toxic to all life stages, including eggs laid on top of residues and those that were treated topically, but larvicidal activity was short lived. The growth regulators pyriproxyfen and novaluron had strong ovicidal activity when eggs were laid on top of residues but had limited larvicidal activity. Tebufenozide was not directly toxic to eggs, but demonstrated larvicidal activity, and ovilarvicidal activity when topically applied to eggs. Azinphosmethyl, phosmet, indoxacarb, thiacloprid, and acetamiprid were all toxic to the egg parasitoid Trichogramma minutum Riley. In contrast pyriproxyfen, emamectin benzoate, methomyl, novaluron, and spinosad did not negatively affect the survival of T. minutum within Acrobasis vacinii eggs. These results help inform the ongoing development of integrated strategies for insect management in blueberry.

Collaboration


Dive into the John C. Wise's collaboration.

Top Co-Authors

Avatar

Larry J. Gut

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rufus Isaacs

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Thornton

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Mark E. Whalon

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge