Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine W. Metzler is active.

Publication


Featured researches published by Christine W. Metzler.


Brain Research | 1996

A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oral-buccal movements.

Casimir A. Fornal; Christine W. Metzler; Franco Marrosu; Luiz E. Ribiero-do-Valle; Barry L. Jacobs

A subgroup of approximately 25% of dorsal raphe nucleus serotonergic neurons in cat was strongly activated in association with oral-buccal movements, such as chewing, licking, and grooming. The mean magnitude of increase in neuronal activity for these cells was approximately 100% above the spontaneous waking level. However, some of these cells were activated by as much as 200-300%. The neuronal activation frequently preceded the initiation of the movement and stopped abruptly in association with either pauses in the motor sequence or with its cessation. Most of the neurons in this subgroup were also strongly and preferentially activated by somatosensory stimuli applied to the head, neck, and face. During orientation to a strong or novel stimulus, the activity of these neurons fell silent for periods of 1-5 s. These data and results from our previous studies of medullary raphe neurons are discussed within the context of the general role of serotonin in tonic and central pattern generator-related motor activity.


Neuroscience | 1997

Single-unit responses of serotonergic dorsal raphe neurons to specific motor challenges in freely moving cats

Sigrid C. Veasey; Casimir A. Fornal; Christine W. Metzler; Barry L. Jacobs

Serotonin has been hypothesized to play an important role in the central control of motor function. Consistent with this hypothesis, virtually all serotonergic neurons within the medullary nuclei raphe obscurus and raphe pallidus in cats are activated in response to specific motor challenges. To determine whether the response profile of serotonergic neurons in the midbrain is similar to that observed in the medulla, the single-unit activity of serotonergic dorsal raphe nucleus cells was studied during three specific motor activities: treadmill-induced locomotion, hypercarbia-induced ventilatory response and spontaneous feeding. In contrast to the results obtained for medullary raphe cells, none of the serotonergic dorsal raphe cells studied (n=26) demonstrated increased firing during treadmill-induced locomotion. A subset of serotonergic dorsal raphe cells (8/36) responded to the hypercarbic ventilatory challenge with increased firing rates that were directly related to the fraction of inspired carbon dioxide, and a non-overlapping subset of cells (6/31) was activated during feeding. All feeding-on cells demonstrated a rapid activation and de-activation coincident with feeding onset and offset, respectively. Although the proportions of serotonergic cells activated by hypercarbia or feeding in the dorsal raphe nucleus were similar to those found in the medullary raphe, there were several major distinctions in the response characteristics for the two cell groups. In contrast to the medullary serotonergic neurons, only a minority of dorsal raphe nucleus serotonergic neurons responded to a motor challenge. Overall, the above results suggest very different roles for the midbrain and medullary serotonergic neurons in response to motor activities.


Brain Research | 1991

FACILITATION OF MASSETER EMG AND MASSETERIC (JAW-CLOSURE) REFLEX BY SEROTONIN IN BEHAVING CATS

L.E. Ribeiro-do-Valle; Christine W. Metzler; Barry L. Jacobs

The trigeminal motor nucleus (MoV) contains the somata of the motoneurons that control jaw position and jaw movements. This nucleus is of neurochemical interest because it receives a dense serotonergic input. We examined the effects of application of serotonin or fluoxetine, a serotonin reuptake blocker, into this nucleus on the spontaneous or reflex (jaw-closure) electrical activity of the masseter muscle in behaving cats. Serotonin produced a clearcut enhancement of both spontaneous and reflex activities. This action was attenuated by previous systemic injection of the serotonin receptor antagonist methysergide. The effect was mimicked to a certain extent by fluoxetine. These data provide evidence that the serotonergic input to MoV exerts a general facilitatory influence on masseter motoneurons activity.


Neuroscience | 2000

Single-unit responses of serotonergic medullary and pontine raphe neurons to environmental cooling in freely moving cats

Francisco Martín-Cora; Casimir A. Fornal; Christine W. Metzler; Barry L. Jacobs

Brain serotonin has long been implicated in the regulation of body temperature, although its precise role is not completely understood. The present study examined the effects of environmental cooling (4-8 degrees C for 2 or 4h) on the single-unit activity of serotonergic neurons recorded in the medullary raphe nuclei obscurus and pallidus and in the pontine dorsal raphe nucleus of freely moving cats. These neuronal groups have primarily descending projections to the spinal cord and ascending projections to the forebrain, respectively. Cold exposure induced shivering and piloerection, but no appreciable changes in core temperature. Of the medullary serotonergic cells studied (n=14), seven were activated and seven were unresponsive to cold exposure. For the responsive cells, the mean increase and peak effect in unit activity relative to baseline were 31% and 46%, respectively. Of the seven cold-responsive cells, the activity of four was monitored when the animals were transferred back to room temperature (23 degrees C). Within 15-30 min, the activity of these cells returned to baseline. In contrast, none of the dorsal raphe nucleus cells studied (n=14) displayed a significant change in neuronal activity during cold exposure, suggesting that these neurons do not receive afferent input from cold-sensitive cutaneous receptors or participate in thermoregulatory responses evoked by low ambient temperatures.Overall, these results suggest that a subset of medullary serotonergic neurons play a role in physiological mechanisms underlying cold defense (e.g. increases in motor output and/or autonomic outflow). On the other hand, the lack of responsiveness of serotonergic dorsal raphe nucleus neurons to cold exposure does not support a specific role for these cells in thermoregulation.


Brain Research | 1996

5-HT1A agonists induce hippocampal theta activity in freely moving cats: role of presynaptic 5-HT1A receptors

Franco Marrosu; Casimir A. Fornal; Christine W. Metzler; Barry L. Jacobs

Electrical activity in the dorsal hippocampus was recorded in freely moving cats in response to intravenous administration of 5-HT1A agonist and antagonist drugs. Administration of low doses of the selective 5-HT1A agonists 8-OH-DPAT (5-20 micrograms/kg) and ipsapirone (20-100 micrograms/kg) produced rhythmic slow activity (theta) in the hippocampal EEG within 30 s. Similar effects were observed with BMY 7378 (20 and 100 micrograms/kg), which acts as an agonist at presynaptic (somatodendritic) 5-HT1A receptors and as an antagonist at postsynaptic 5-HT1A receptors. Power spectral analyses showed that all three compounds produced a dose-dependent increase in the EEG power occurring in the theta frequency band (3.5-8.0 Hz) as a proportion of total power from 0.25 to 30.0 Hz (relative theta power). The increase in relative theta power produced by 8-OH-DPAT (20 micrograms/kg) was greatly attenuated by spiperone (1 mg/kg), a highly effective 5-HT1A autoreceptor antagonist. Administration of spiperone alone had no significant effect on relative theta power. These results are discussed in relationship to the effects of these drugs on serotonergic neuronal activity. Our results suggest that preferential activation of presynaptic 5-HT1A receptors, and subsequent inhibition of serotonin neurotransmission, facilitates the appearance of hippocampal theta activity in awake cats.


European Journal of Pharmacology | 1998

The 5-HT1A receptor antagonist p-MPPI blocks 5-HT1A autoreceptors and increases dorsal raphe unit activity in awake cats

Bjørn Bjorvatn; Casimir A. Fornal; Francisco J. Martı́n; Christine W. Metzler; Barry L. Jacobs

The effects of the putative 5-HT1A receptor antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzam ide (p-MPPI) were examined on the activity of serotonergic dorsal raphe nucleus neurons in freely moving cats. Systemic administration of p-MPPI produced a dose-dependent increase in firing rate. This stimulatory effect of p-MPPI was evident during wakefulness (when serotonergic neurons display a relatively high level of activity), but not during sleep (when serotonergic neurons display little or no spontaneous activity). p-MPPI also blocked the ability of the 5-HT1A receptor agonist 8-hydroxy-(2-di-n-propylamino)tetralin (8-OH-DPAT) to inhibit serotonergic neuronal activity. This antagonism was evident both as a reversal of the neuronal inhibition produced by prior injection of 8-OH-DPAT and as a shift in the potency of 8-OH-DPAT following p-MPPI pretreatment. Overall, these results in behaving animals indicate that p-MPPI acts as an effective 5-HT1A autoreceptor antagonist. The increase in firing rate produced by p-MPPI supports the hypothesis that autoreceptor-mediated feedback inhibition operates under physiological conditions.


European Journal of Pharmacology | 1999

Pindolol increases extracellular 5-HT while inhibiting serotonergic neuronal activity

Casimir A. Fornal; Francisco J. Martı́n; Anna Mendlin; Christine W. Metzler; Bjørn Bjorvatn; Barry L. Jacobs

The effects of pindolol, a beta-adrenoceptor blocker/putative 5-hydroxytryptamine (5-HT)1A/1B antagonist, on both the single-unit activity of serotonergic neurons in the dorsal raphe nucleus (DRN) and extracellular 5-HT levels in the caudate nucleus, were examined in freely moving cats. Administration of (+)-pindolol (1 and 10 mg/kg, s.c.) decreased neuronal activity and increased 5-HT levels in a dose- and time-dependent manner. The subsequent administration of WAY-100635 [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cycloh exanecarboxamide] (0.2 mg/kg, s.c.), a selective 5-HT1A receptor antagonist, blocked pindolol-induced neuronal suppression and potentiated 5-HT output. These results indicate that pindolol may be acting at the level of the nerve terminal to increase 5-HT.


Neuropsychopharmacology | 2001

Effects of Standardized Extracts of St. John's Wort on the Single-Unit Activity of Serotonergic Dorsal Raphe Neurons in Awake Cats: Comparisons with Fluoxetine and Sertraline

Casimir A. Fornal; Christine W. Metzler; Christian Mirescu; Susan K Stein; Barry L. Jacobs

St. Johns wort is widely used as an herbal remedy for depression. Although its mechanism of action remains unknown, some evidence suggests that St. Johns wort might act via brain serotonin (e.g., as a serotonin reuptake inhibitor). To determine whether St. Johns wort affects the central serotonergic system, we monitored the discharge rate of serotonin-containing neurons in the dorsal raphe nucleus of awake cats following systemic administration of two clinical preparations of St. Johns wort, Jarsin® 300 (15–600 mg/kg, p.o.) and Hyperforat® (0.5–4.0 ml, i.v.). Both preparations were found to have no effect on neuronal activity. This contrasts sharply with the action of fluoxetine and sertraline (2 mg/kg, p.o.), two selective serotonin reuptake inhibitors (SSRIs), which markedly depressed neuronal activity by increasing the synaptic availability of serotonin at inhibitory somatodendritic 5-HT1A autoreceptors. The failure of St. Johns wort to depress neuronal activity cannot be attributed to an impairment of the 5-HT1A autoreceptor mechanism, since pretreatment with Jarsin® 300 (300 mg/kg, p.o.) did not alter the responsiveness of serotonergic neurons to the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (10 μg/kg, i.v.). Overall, these findings indicate that the mode of action of St. Johns wort is different from that of conventional antidepressant drugs, which elevate brain serotonin and evoke negative feedback control of serotonergic neurons.


European Journal of Neuroscience | 2002

Insulin-induced hypoglycemia decreases single-unit activity of serotonergic medullary raphe neurons in freely moving cats: relationship to sympathetic and motor output

Francisco Martín-Cora; Casimir A. Fornal; Christine W. Metzler; Barry L. Jacobs

Serotonergic single‐unit activity during glucoregulatory challenges was studied in the nuclei raphe obscurus (NRO) and raphe pallidus (NRP) of freely moving cats. Systemic insulin administration (2–4 IU/kg, i.v.) suppressed neuronal activity by ≈ 40% in direct relationship to blood glucose levels and in inverse relationship to plasma catecholamine levels. NRO and NRP serotonergic neurons displayed a temporary recovery in unit activity in response to i.v. glucose administration (500 mg/kg), which temporarily reversed insulin‐induced hypoglycemia. The neuronal responses to insulin and subsequent glucose administration were also directly related to changes in integrated nuchal electromyographic activity. Serotonergic unit activity remained unchanged after glucose loading (500 mg/kg, i.v.), which produced a four‐fold increase in blood glucose. Thus, medullary serotonergic neurons appear to be sensitive to reductions, but not increases, in blood glucose. The observed inverse relationship between unit activity and plasma catecholamines does not support a postulated sympathoexcitatory role for these neurons. Instead, the parallel changes in single‐unit activity and integrated muscle activity support the hypothesis that the activity of medullary serotonergic neurons is linked to motor output. These neurons may modulate autonomic outflow, but only in relationship to their primary role in motor control. Finally, medullary serotonergic neurons may play a protective role in maintaining glucose homeostasis by disfacilitating the output of the somatomotor system, and hence diminishing muscle energy demands, when peripheral glucose availability is low.


European Journal of Pharmacology | 2000

Venlafaxine and its interaction with WAY 100635: effects on serotonergic unit activity and behavior in cats.

Bjørn Bjorvatn; Casimir A. Fornal; Francisco J. Martı́n; Christine W. Metzler; Barry L. Jacobs

The therapeutic efficacy of antidepressant drugs that inhibit the reuptake of serotonin (5-hydroxytryptamine, 5-HT) may be enhanced by blocking their indirect activation of 5-HT(1A) autoreceptors, which mediate feedback inhibition of serotonergic neuronal activity. In this study, we examined the effects of venlafaxine, a dual 5-HT/noradrenaline reuptake inhibitor, alone and in combination with the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide (WAY 100635), on the single-unit activity of serotonergic dorsal raphe neurons and concurrent behavior in freely moving cats. Systemic administration of venlafaxine (0.05-1.0 mg/kg, i.v.) produced a dose-dependent decrease in firing rate (ED(50)=0.19 mg/kg), with virtually complete inhibition of neuronal discharge at the highest dose tested. The subsequent administration of WAY 100635 (0.1 mg/kg, i.v.) rapidly reversed the neuronal suppression produced by venlafaxine and significantly elevated the firing rate above baseline levels. The overshoot in neuronal activity was associated with the onset of an adverse behavioral reaction resembling the 5-HT syndrome resulting from excessive levels of brain 5-HT. The intensity of this reaction paralleled the degree of neuronal restoration induced by WAY 100635, suggesting a causal relationship. Such behavioral responses were either not observed previously, or of a low intensity, when WAY 100635 was combined with selective 5-HT reuptake inhibitors. Overall, these results suggest that the risk of inducing adverse effects, such as the 5-HT syndrome, may be higher with dual 5-HT/noradrenaline reuptake inhibitors than with selective 5-HT reuptake inhibitors, when these agents are combined with a potent 5-HT(1A) autoreceptor antagonist. Possible mechanisms that might account for these differences in drug interaction are discussed.

Collaboration


Dive into the Christine W. Metzler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sigrid C. Veasey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge