Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Zelenak is active.

Publication


Featured researches published by Christine Zelenak.


Cellular Physiology and Biochemistry | 2011

p38 MAPK Activation and Function following Osmotic Shock of Erythrocytes

Sergios Gatidis; Christine Zelenak; Abul Fajol; Elisabeth Lang; Kashif Jilani; Diana Michael; Syed M. Qadri; Florian Lang

p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca2+ activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca2+ activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 µM) and p38 Inh III (1 µM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.


Journal of Cellular and Molecular Medicine | 2012

Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene.

Syed M. Qadri; Hasan Mahmud; Elisabeth Lang; Shuchen Gu; Diwakar Bobbala; Christine Zelenak; Kashif Jilani; Alexandra Siegfried; Michael Föller; Florian Lang

Loss‐of‐function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apcMin/+) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca2+ activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC‐deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin–luciferase in isolated erythrocytes from apcMin/+ mice and wild‐type mice (apc+/+). Clearance of circulating erythrocytes was estimated by carboxyfluorescein‐diacetate‐succinimidyl‐ester labelling. As a result, apcMin/+ mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Extracellular Ca2+ removal or inhibition of Ca2+ entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca2+‐entry by treatment with Ca2+‐ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apcMin/+ erythrocytes than in apc+/+ erythrocytes. Following retrieval and injection into the circulation of the same mice, apcMin/+ erythrocytes were more rapidly cleared from circulating blood than apc+/+ erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apcMin/+ mice. The observations point to accelerated eryptosis and subsequent clearance of apcMin/+ erythrocytes, which contributes to or even accounts for the enhanced erythrocyte turnover, anaemia and splenomegaly in those mice.


Journal of Proteome Research | 2011

Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis.

Christine Zelenak; Föller M; Ana Velic; Karsten Krug; Syed M. Qadri; Viollet B; Florian Lang; Boris Macek

Activation of AMP-activated protein kinase (AMPK) upon energy depletion stimulates energy production and limits energy utilization. Erythrocytes lacking AMPK are susceptible to suicidal cell death (eryptosis). A hallmark of eryptosis is cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface, which can be identified from annexin V-binding. AMPKα1-deficient mice (ampk(-/-)) suffer from anemia due to accelerated clearance of erythrocytes from circulating blood. To determine the link between AMPK and the eryptotic phenotype, we performed a global proteome analysis of erythrocytes from ampk(-/-) mice and wild-type mice using high-accuracy mass spectrometry and label-free quantitation and measured changes of expression levels of 812 proteins. Notably, the p21-activated kinase 2 (PAK2), previously implicated in apoptosis, was detected as downregulated in erythrocytes of ampk(-/-) mice, pointing to its potential role in eryptosis. To validate this, we showed that specific inactivation of PAK2 with the inhibitor IPA3 in human and murine ampk(+/+) erythrocytes increases the binding of annexin V and augments the stimulating effect of glucose deprivation on annexin V-binding. Inhibition of PAK2 failed to significantly modify annexin V-binding in ampk(-/-) erythrocytes, showing that AMPK and PAK2 exert similar phenotypes upon inactivation in erythrocytes. This study presents the first large-scale analysis of protein expression in erythrocytes from AMPKα1-deficient mice and reveals a role of PAK2 kinase in eryptosis.


Cellular Physiology and Biochemistry | 2014

Stimulation of eryptosis by cryptotanshinone.

Rosi Bissinger; Adrian Lupescu; Christine Zelenak; Kashif Jilani; Florian Lang

Background/Aims: Cryptotanshinone, a component of Salvia miltiorrhiza Bunge roots, may trigger suicidal death or apoptosis of tumor cells and has thus been recommended for the prevention and treatment of malignancy. On the other hand, Cryptotanshinone has been shown to counteract apoptosis of neurons and hepatocytes. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+-activity ([Ca2+]i). The present study explored whether Cryptotanshinone stimulates eryptosis. Methods: Forward scatter was taken as measure of cell volume, annexin V binding for identification of phosphatidylserine-exposing erythrocytes and Fluo3-fluorescence for determination of [Ca2+]i. Results: A 48 h exposure of human erythrocytes to Cryptotanshinone (10 µM) was followed by significant decrease of forward scatter, significant increase of the percentage annexin-V-binding cells and significant increase of [Ca2+]i. The effect of Cryptotanshinone (1 µM) on annexin-V-binding was virtually abrogated by removal of extracellular Ca2+. Conclusion: Cryptotanshinone is a powerful stimulator of suicidal erythrocyte death or eryptosis, which is effective mainly, if not exclusively, by stimulation of Ca2+ entry.


Cellular Physiology and Biochemistry | 2011

Sphingosine but not sphingosine-1-phosphate stimulates suicidal erythrocyte death.

Syed M. Qadri; Julia Bauer; Christine Zelenak; Hasan Mahmud; Yuliya Kucherenko; Seung Hun Lee; Klaus Ferlinz; Florian Lang

Sphingosine kinase 1 phosphorylates sphingosine, which is converted to ceramide by ceramide synthetase. Ceramide triggers eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine (PS) exposure at the erythrocyte surface. Erythrocytes lack sphingosine phosphate-degrading enzymes and thus store large quantities of sphingosine phosphate. The present study explored the influence of sphingosine and sphingosine phosphate on eryptosis. [Ca2+]i, was estimated from Fluo3 fluorescence, cell volume from forward scatter and PS exposure from annexin V-binding in FACS analysis. Sphingosine (0.1 – 10 µM) but not sphingosine-1- phosphate (0.1 – 10 µM) increased [Ca2+]i, decreased cell volume and increased PS-exposure. The observations disclose sphingosine, but not sphingosine-1-phosphate, as a strong inducer of eryptosis.


Cellular Physiology and Biochemistry | 2011

Stimulation of suicidal erythrocyte death by benzethonium.

Elisabeth Lang; Kashif Jilani; Christine Zelenak; Venkanna Pasham; Diwakar Bobbala; Syed M. Qadri; Florian Lang

Benzethonium, an antimicrobial surfactant widely used as preservative of pharmaceuticals, topical wound care product and oral disinfectant, triggers apoptosis of several cell types. The apoptosis is preceded and possibly triggered by mitochondrial depolarization. Even though lacking mitochondria, erythrocytes may similarly undergo suicidal cell death or eryptosis. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptosis may be triggered by energy depletion, which leads to increase of cytosolic Ca2+-activity with subsequent Ca2+-sensitive cell shrinkage and cell membrane scrambling. Ca2+-sensitivity is enhanced by ceramide. The present study explored the effect of benzethonium on eryptosis. Cell membrane scrambling was estimated from binding of fluorescent annexin V to phosphatidylserine, cell volume from forward scatter in FACS analysis, cytosolic Ca2+-concentration from Fluo3-fluorescence, hemolysis from hemoglobin release, lactate formation by colorimetry and ceramide utilizing fluorescent antibodies. A 48 hours exposure to benzethonium (=5µM) significantly increased cytosolic Ca2+-concentration, decreased forward scatter and triggered annexin V-binding affecting some 30% of the erythrocytes at 5 µM benzethonium. Only 5% of treated erythrocytes were hemolytic. The effects of benzethonium on annexin V binding were blunted in the nominal absence of Ca2+ and in the presence of amiloride (1 mM) but not in the presence of the pancaspase inhibitor zVAD (10 µM). Benzethonium further significantly enhanced the effect of glucose depletion on cytosolic Ca2+-concentration and annexin V-binding, but significantly blunted the effect of glucose depletion on forward scatter. Benzethonium (5 µM) significantly enhanced lactic acid formation but not ceramide abundance. The present observations disclose a novel effect of benzethonium, i.e. triggering of suicidal death of erythrocytes.


Cellular Physiology and Biochemistry | 2012

Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study.

Syed M. Qadri; Florian Lang; Adrian Lupescu; Nazneen Shaik; Kashif Jilani; Christine Zelenak; Elisabeth Lang; Venkanna Pasham; Mohanad Zbidah; Michael Bitzer

Background: Sorafenib (Nexavar®), a polytyrosine kinase inhibitor, stimulates apoptosis and is thus widely used for chemotherapy in hepatocellular carcinoma (HCC). Hematological side effects of Nexavar® chemotherapy include anemia. Erythrocytes may undergo apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and phosphatidylserine-exposure at the cell surface. Signaling leading to eryptosis include increase in cytosolic Ca2+activity ([Ca2+]i), formation of ceramide, ATP-depletion and oxidative stress. The present study explored, whether sorafenib triggers eryptosis in vitro and in vivo. Methods: [Ca2+]i was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, ceramide with antibody binding-dependent fluorescence, cytosolic ATP with a luciferin–luciferase-based assay, and oxidative stress from 2’,7’ dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 48 h exposure of erythrocytes to sorafenib (≥0.5 µM) significantly increased Fluo 3 fluorescence, decreased forward scatter, increased annexin-V-binding and triggered slight hemolysis (≥5 µM), but did not significantly modify ceramide abundance and cytosolic ATP. Sorafenib treatment significantly enhanced DCFDA-fluorescence and the reducing agents N-acetyl-L-cysteine and tiron significantly blunted sorafenib-induced phosphatidylserine exposure. Nexavar® chemotherapy in HCC patients significantly enhanced the number of phosphatidylserine-exposing erythrocytes. Conclusions: The present observations disclose novel effects of sorafenib, i.e. stimulation of suicidal erythrocyte death or eryptosis, which may contribute to the pathogenesis of anemia in Nexavar®-based chemotherapy.


Cellular Physiology and Biochemistry | 2011

Dicoumarol activates Ca2+-permeable cation channels triggering erythrocyte cell membrane scrambling.

Syed M. Qadri; Yuliya Kucherenko; Christine Zelenak; Kashif Jilani; Elisabeth Lang; Florian Lang

Dicoumarol, a widely used anticoagulant, may cause anemia, which may result from enhanced erythrocyte loss due to bleeding or due to accelerated erythrocyte death. Erythrocytes may undergo suicidal death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis may be triggered by increase of cytosolic 2+-activity ([Ca2+]i). The present study explored, whether dicoumarol induces eryptosis. [Ca2+]i was estimated from Fluo3-fluorescence, cation channel activity utilizing whole cell patch clamp, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding, and hemolysis from haemoglobin release. Exposure of erythrocytes for 48 hours to dicoumarol (=10 µM) significantly increased [Ca2+]i, enhanced cation channel activity, decreased forward scatter, triggered annexin-V-binding and elicited hemolysis. Following exposure to 30 µM dicoumarol, annexin-V-binding affected approximately 15%, and hemolysis 2% of treated erythrocytes. The stimulation of annexin-V-binding by dicoumarol was abrogated in the nominal absence of 2+. In conclusion, dicoumarol stimulates suicidal death of erythrocytes by stimulating Ca2+ entry and subsequent triggering of 2+ dependent cell membrane scrambling.


Cellular Physiology and Biochemistry | 2012

Protein kinase CK1α regulates erythrocyte survival.

Christine Zelenak; Matthias Eberhard; Kashif Jilani; Syed M. Qadri; Boris Macek; Florian Lang

Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca2+ activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 µM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 µM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca2+ activity.


Kidney & Blood Pressure Research | 2015

Vitamin D-Rich Diet in Mice Modulates Erythrocyte Survival.

Elisabeth Lang; Kashif Jilani; Rosi Bissinger; Rexhep Rexhepaj; Christine Zelenak; Adrian Lupescu; Florian Lang; Syed M. Qadri

Background/Aims: Epidemiological evidence suggests that vitamin D deficiency is associated with anemia. The potent metabolite 1,25(OH)2 vitamin D3 [1,25(OH)2D3] activates various signaling cascades regulating a myriad of cellular functions including suicidal cell death or apoptosis. Suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Stimulation of eryptosis may limit lifespan of circulating erythrocytes and thus cause anemia. In the present study, we explored the effect of a high vitamin D diet (10,000 I.U. vitamin D for 14 days) in mice on eryptosis. Methods: Plasma concentrations of erythropoietin were estimated using an immunoassay kit, blood count using an electronic hematology particle counter, relative reticulocyte numbers using Retic-COUNT® reagent, PS exposure at the cell surface from annexin V binding, cell volume from forward scatter, and cytosolic Ca2+ ([Ca2+]i) from Fluo3-fluorescence in FACS analysis. Results: Vitamin D treatment decreased mean corpuscular volume, reticulocyte count, and plasma erythropoietin levels. Vitamin D treatment slightly but significantly decreased forward scatter but did not significantly modify spontaneous PS exposure and [Ca2+]i of freshly drawn erythrocytes. Vitamin D treatment augmented the stimulation of PS exposure and cell shrinkage following exposure to hyperosmotic shock (addition of 550 mM sucrose) or energy depletion (glucose removal) without significantly modifying [Ca2+]i. Conclusions: The present observations point to a subtle effect of exogenous vitamin D supplementation on erythrocyte survival.

Collaboration


Dive into the Christine Zelenak's collaboration.

Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Rotte

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge