Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syed M. Qadri is active.

Publication


Featured researches published by Syed M. Qadri.


American Journal of Physiology-cell Physiology | 2012

Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX

Oliver Borst; Majed Abed; Ioana Alesutan; Syeda T. Towhid; Syed M. Qadri; Michael Föller; Meinrad Gawaz; Florian Lang

Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+ activity, which may result from treatment with the Ca2+ ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.


Cellular Physiology and Biochemistry | 2011

p38 MAPK Activation and Function following Osmotic Shock of Erythrocytes

Sergios Gatidis; Christine Zelenak; Abul Fajol; Elisabeth Lang; Kashif Jilani; Diana Michael; Syed M. Qadri; Florian Lang

p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca2+ activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca2+ activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 µM) and p38 Inh III (1 µM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.


Hepatology | 2015

Conjugated Bilirubin Triggers Anemia by Inducing Erythrocyte Death

Elisabeth Lang; Sergios Gatidis; Noemi F. Freise; Hans H. Bock; Ralf Kubitz; Christian Lauermann; Hans Martin Orth; Caroline Klindt; Maximilian Schuier; Verena Keitel; Maria Reich; Guilai Liu; Sebastian Schmidt; Haifeng C. Xu; Syed M. Qadri; Diran Herebian; Aleksandra A. Pandyra; Ertan Mayatepek; Erich Gulbins; Florian Lang; Dieter Häussinger; Karl S. Lang; Michael Föller; Philipp A. Lang

Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver‐damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca2+ influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. Conclusion: Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease. (Hepatology 2015;61:275–284)


Journal of Proteome Research | 2011

Proteome analysis of erythrocytes lacking AMP-activated protein kinase reveals a role of PAK2 kinase in eryptosis.

Christine Zelenak; Föller M; Ana Velic; Karsten Krug; Syed M. Qadri; Viollet B; Florian Lang; Boris Macek

Activation of AMP-activated protein kinase (AMPK) upon energy depletion stimulates energy production and limits energy utilization. Erythrocytes lacking AMPK are susceptible to suicidal cell death (eryptosis). A hallmark of eryptosis is cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface, which can be identified from annexin V-binding. AMPKα1-deficient mice (ampk(-/-)) suffer from anemia due to accelerated clearance of erythrocytes from circulating blood. To determine the link between AMPK and the eryptotic phenotype, we performed a global proteome analysis of erythrocytes from ampk(-/-) mice and wild-type mice using high-accuracy mass spectrometry and label-free quantitation and measured changes of expression levels of 812 proteins. Notably, the p21-activated kinase 2 (PAK2), previously implicated in apoptosis, was detected as downregulated in erythrocytes of ampk(-/-) mice, pointing to its potential role in eryptosis. To validate this, we showed that specific inactivation of PAK2 with the inhibitor IPA3 in human and murine ampk(+/+) erythrocytes increases the binding of annexin V and augments the stimulating effect of glucose deprivation on annexin V-binding. Inhibition of PAK2 failed to significantly modify annexin V-binding in ampk(-/-) erythrocytes, showing that AMPK and PAK2 exert similar phenotypes upon inactivation in erythrocytes. This study presents the first large-scale analysis of protein expression in erythrocytes from AMPKα1-deficient mice and reveals a role of PAK2 kinase in eryptosis.


Cellular Physiology and Biochemistry | 2011

Dicoumarol activates Ca2+-permeable cation channels triggering erythrocyte cell membrane scrambling.

Syed M. Qadri; Yuliya Kucherenko; Christine Zelenak; Kashif Jilani; Elisabeth Lang; Florian Lang

Dicoumarol, a widely used anticoagulant, may cause anemia, which may result from enhanced erythrocyte loss due to bleeding or due to accelerated erythrocyte death. Erythrocytes may undergo suicidal death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis may be triggered by increase of cytosolic 2+-activity ([Ca2+]i). The present study explored, whether dicoumarol induces eryptosis. [Ca2+]i was estimated from Fluo3-fluorescence, cation channel activity utilizing whole cell patch clamp, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding, and hemolysis from haemoglobin release. Exposure of erythrocytes for 48 hours to dicoumarol (=10 µM) significantly increased [Ca2+]i, enhanced cation channel activity, decreased forward scatter, triggered annexin-V-binding and elicited hemolysis. Following exposure to 30 µM dicoumarol, annexin-V-binding affected approximately 15%, and hemolysis 2% of treated erythrocytes. The stimulation of annexin-V-binding by dicoumarol was abrogated in the nominal absence of 2+. In conclusion, dicoumarol stimulates suicidal death of erythrocytes by stimulating Ca2+ entry and subsequent triggering of 2+ dependent cell membrane scrambling.


Cellular Physiology and Biochemistry | 2012

Protein kinase CK1α regulates erythrocyte survival.

Christine Zelenak; Matthias Eberhard; Kashif Jilani; Syed M. Qadri; Boris Macek; Florian Lang

Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca2+ activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 µM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 µM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca2+ activity.


Journal of Cellular and Molecular Medicine | 2016

Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin

Syed M. Qadri; David A. Donkor; Varsha Bhakta; Louise J. Eltringham-Smith; Dhruva J. Dwivedi; Jane C. Moore; Laura Pepler; Nikola Ivetic; Ishac Nazi; Alison E. Fox-Robichaud; Patricia C. Liaw; William P. Sheffield

The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.


Kidney & Blood Pressure Research | 2015

Vitamin D-Rich Diet in Mice Modulates Erythrocyte Survival.

Elisabeth Lang; Kashif Jilani; Rosi Bissinger; Rexhep Rexhepaj; Christine Zelenak; Adrian Lupescu; Florian Lang; Syed M. Qadri

Background/Aims: Epidemiological evidence suggests that vitamin D deficiency is associated with anemia. The potent metabolite 1,25(OH)2 vitamin D3 [1,25(OH)2D3] activates various signaling cascades regulating a myriad of cellular functions including suicidal cell death or apoptosis. Suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Stimulation of eryptosis may limit lifespan of circulating erythrocytes and thus cause anemia. In the present study, we explored the effect of a high vitamin D diet (10,000 I.U. vitamin D for 14 days) in mice on eryptosis. Methods: Plasma concentrations of erythropoietin were estimated using an immunoassay kit, blood count using an electronic hematology particle counter, relative reticulocyte numbers using Retic-COUNT® reagent, PS exposure at the cell surface from annexin V binding, cell volume from forward scatter, and cytosolic Ca2+ ([Ca2+]i) from Fluo3-fluorescence in FACS analysis. Results: Vitamin D treatment decreased mean corpuscular volume, reticulocyte count, and plasma erythropoietin levels. Vitamin D treatment slightly but significantly decreased forward scatter but did not significantly modify spontaneous PS exposure and [Ca2+]i of freshly drawn erythrocytes. Vitamin D treatment augmented the stimulation of PS exposure and cell shrinkage following exposure to hyperosmotic shock (addition of 550 mM sucrose) or energy depletion (glucose removal) without significantly modifying [Ca2+]i. Conclusions: The present observations point to a subtle effect of exogenous vitamin D supplementation on erythrocyte survival.


Cellular Physiology and Biochemistry | 2013

Geldanamycin-Induced Phosphatidylserine Translocation in the Erythrocyte Membrane

Kashif Jilani; Syed M. Qadri; Florian Lang

Background/aims: Geldanamycin, a benzoquinone ansamycin antibiotic, and its analogues induce apoptosis of tumor cells and are thus considered for the treatment of cancer. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+-concentration ([Ca2+]i) and formation of ceramide. The present study explored, whether geldanamycin modifies [Ca2+]i, ceramide formation, cell volume and phosphatidylserine abundance at the erythrocyte surface. Methods: Erythrocyte volume was estimated from forward scatter, phosphatidylserine-abundance from annexin V binding, hemolysis from hemoglobin release, ceramide formation from binding of fluorescent antibodies and [Ca2+]i from Fluo3-fluorescence. Results: A 48 hours exposure to geldanamycin significantly decreased forward scatter (≥ 5 µM), significantly increased annexin-V-binding (≥ 25 µM), but did not significantly modify Fluo3-fluorescence (up to 50 µM). The annexin-V-binding following geldanamycin treatment was not significantly modified by removal of extracellular Ca2+ but was paralleled by significantly increased ceramide formation (50 µM). Conclusions: Geldanamycin stinulated eryptosis, an effect at least partially due to ceramide formation.


The FASEB Journal | 2012

Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis

Michael Föller; Andreas Hermann; Shuchen Gu; Ioana Alesutan; Syed M. Qadri; Oliver Borst; Eva-Maria Schmidt; Franziska Schiele; Jennifer Müller vom Hagen; Carsten Saft; Ludger Schöls; Holger Lerche; Christos Stournaras; Alexander Storch; Florian Lang

Chorea‐acanthocytosis is an inevitably lethal genetic disease characterized by a progressive hyperkinetic movement disorder and cognitive and behavioral abnormalities as well as acanthocytosis. The disease is caused by loss‐of‐function mutations of the gene encoding vacuolar protein sorting‐associated protein 13A (VPS13A) or chorein, a protein with unknown function expressed in various cell types. How chorein deficiency leads to the pathophysiology of chorea‐acanthocytosis remains enigmatic. Here we show decreased phosphoinositide‐3‐kinase (PI3K)‐p85‐subunit phosphorylation, ras‐related C3 botunlinum toxin substrate 1 (Rac1) activity, and p21 protein‐activated kinase 1 (PAK1) phosphorylation as well as depolymerized cortical actin in erythrocytes from patients with chorea‐acanthocytosis and in K562‐erythrocytic cells following chorein silencing. Pharmacological inhibition of PI3K, Rac1, or PAK1 similarly triggered actin depolymerization. Moreover, in K562 cells, both chorein silencing and PAK1 inhibition with IPA‐3 decreased phosphorylation of Bad, a Bcl2‐associated protein, promoting apoptosis by forming mitochondrial pores, followed by mitochondrial depolarization, DNA fragmentation, and phosphatidylserine exposure at the cell surface, all hallmarks of apoptosis. Our observations reveal chorein as a novel powerful regulator of cytoskeletal architecture and cell survival, thus explaining erythrocyte misshape and possibly neurodegeneration in chorea‐acanthocytosis.—Föller, M., Hermann, A., Gu, S., Alesutan, I., Qadri, S. M., Borst, O., Schmidt, E.‐M., Schiele, F., Müller vom Hagen, J., Saft, C., Schöls, L., Lerche, H., Stournaras, C., Storch, A., Lang, F. Chorein‐sensitive polymerization of cortical actin and suicidal cell death in chorea‐acanthocytosis. FASEB J. 26, 1526–1534 (2012). www.fasebj.org

Collaboration


Dive into the Syed M. Qadri's collaboration.

Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abul Fajol

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge