Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Beyer is active.

Publication


Featured researches published by Christof Beyer.


Environmental Earth Sciences | 2013

Impacts of the use of the geological subsurface for energy storage: an investigation concept

Sebastian Bauer; Christof Beyer; Frank Dethlefsen; Peter Dietrich; Rainer Duttmann; Markus Ebert; Volker Feeser; Uwe Jens Görke; Ralf Köber; Olaf Kolditz; Wolfgang Rabbel; Tom Schanz; Dirk Schäfer; Hilke Würdemann; Andreas Dahmke

New methods and technologies for energy storage are required to make a transitionto renewable energy sources; in Germany this transition is termed “Energiewende”. Subsurface georeservoirs, such as salt caverns for hydrogen, compressed air, and methane storage or porous formations for heat and gas storage, offer the possibility of hosting large amounts of energy. When employing these geological storage facilities, an adequate system and process understanding is essential in order to characterize and to predict the complex and interacting effects on other types of subsurface use and on protected entities. In order to make optimal use of georeservoirs, a comprehensive use planning of the subsurface is required that allocates specific uses to appropriate subsurface locations. This paper presents a generic methodology on how subsurface use planning can be conducted and how its scientific basis can be developed. Although synthetic, realistic scenarios for the use of the geological underground for energy storage are parameterized and numerically simulated, accounting for other kinds of subsurface use already in place. From these scenario analyses, the imposed coupled hydraulic, thermal, mechanical and chemical processes, as well as mutual effects and influences on protected entities are assessed and generalized. Based on these, a first methodology for large-scale planning of the geological subsurface considering different surface and subsurface usage scenarios may also be derived.


Environmental Earth Sciences | 2012

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model

Marco De Lucia; Sebastian Bauer; Christof Beyer; Thomas Nowak; Dieter Pudlo; Viktor Reitenbach; Susanne Stadler

Modelling fluid–rock interactions induced by CO2 is a key issue when evaluating the technical feasibility and long-term safety assessment of CO2 storage projects in deep formations. The German R&D programme CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) investigated the almost depleted onshore gas reservoir located in the Rotliegend sandstone at over 3,000-m depth. The high salinity of the formation fluids and the elevated temperature in the reservoir exceed the validity limits of commonly available thermodynamic databases needed for predictive geochemical modelling. In particular, it is shown that the activity model of Pitzer has to be applied, even if necessary input data for this model are incomplete or inconsistent for complex systems and for the considered temperatures. Simulations based on Debye-Hückel activity model lead to severe, systematic discrepancies already in the simple proposed reference case where experimental data could be used for comparison. A simplified geochemical model, consistent with the average measured composition of formation fluids and the prevailing mineralogical assemblage of the host rock, identifies the mineral phases most likely to be considered at equilibrium with the formation fluid. The simulated reactions due to CO2 injection, under the hypothesis of local thermodynamical equilibrium, result in a moderate reactivity of the system, with the dissolution of anhydrite cementation and haematite being the most relevant expected mineral reactions. This is compensated, at equilibrium, by the precipitation of new carbonates, like calcite and siderite, for an overall very small loss of porous space. The simulated rather small effect of mineral alteration is also due to the scarce amount of water available for reactions in the reservoir. The results of the model are qualitatively in line with observations from batch experiments and from natural analogues.


Journal of Contaminant Hydrology | 2009

Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes.

Philipp Blum; Daniel Hunkeler; Matthias Weede; Christof Beyer; Peter Grathwohl; Barbara Morasch

At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.


Environmental Earth Sciences | 2017

Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning: the ANGUS+ project

Alina Kabuth; Andreas Dahmke; Christof Beyer; Lars Bilke; Frank Dethlefsen; Peter Dietrich; Rainer Duttmann; Markus Ebert; Volker Feeser; Uwe-Jens Görke; Ralf Köber; Wolfgang Rabbel; Tom Schanz; Dirk Schäfer; Hilke Würdemann; Sebastian Bauer

New techniques and methods for energy storage are required for the transition to a renewable power supply, termed “Energiewende” in Germany. Energy storage in the geological subsurface provides large potential capacities to bridge temporal gaps between periods of production of solar or wind power and consumer demand and may also help to relieve the power grids. Storage options include storage of synthetic methane, hydrogen or compressed air in salt caverns or porous formations as well as heat storage in porous formations. In the ANGUS+ project, heat and gas storage in porous media and salt caverns and aspects of their use on subsurface spatial planning concepts are investigated. The optimal dimensioning of storage sites, the achievable charging and discharging rates and the effective storage capacity as well as the induced thermal, hydraulic, mechanical, geochemical and microbial effects are studied. The geological structures, the surface energy infrastructure and the governing processes are parameterized, using either literature data or own experimental studies. Numerical modeling tools are developed for the simulation of realistically defined synthetic storage scenarios. The feasible dimensioning of storage applications is assessed in site-specific numerical scenario analyses, and the related spatial extents and time scales of induced effects connected with the respective storage application are quantified. Additionally, geophysical monitoring methods, which allow for a better spatial resolution of the storage operation, induced effects or leakages, are evaluated based on these scenario simulations. Methods for the assessment of such subsurface geological storage sites are thus developed, which account for the spatial extension of the subsurface operation itself as well as its induced effects and the spatial requirements of adequate monitoring methods.


Biodegradation | 2014

Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments

E. Ballarini; Christof Beyer; Robert D. Bauer; Christian Griebler; Sebastian Bauer

The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic / anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.


Grundwasser | 2007

Modellbasierte Sickerwasserprognose für die Verwertung von Recycling-Baustoff in technischen Bauwerken

Christof Beyer; Wilfried Konrad; C H Park; Sebastian Bauer; Peter Grathwohl; Hermann Rügner; Rudolf Liedl

in this study, groundwater contamination from recycled demolition waste in road constructions is assessed using predictions of leachate concentrations. Numerical transport simulations are performed for three scenarios (a parking lot, a noise protection barrier, and road), and using a number of characteristic subsoils of germany, to estimate the breakthrough of different contaminant classes at the groundwater table. conservative tracer breakthrough times (btt) primarily depend on subsoil hydraulic properties, for organic pollutants KOc and subsoil Oc are the controlling parameters. Significant concentration reductions from dispersion only occur when source concentrations decrease prior to contaminant breakthrough. if source concentrations remain high for long periods relative to peak btt, concentration breakthrough is undamped. accounting for biodegradation reduces breakthrough concentrations significantly. For the “noise protection barrier” and “road” scenarios, capillary barrier effects cause the seepage water to partially bypass the recycling material. accounting for this bypass flow and spatial averaging across the constructions reduces concentrations by about 30–40 %.


Petroleum Geoscience | 2017

Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects

Christof Beyer; Sebastian Bauer

Large-scale energy storage in the geological subsurface (e.g. by storing hydrogen gas) may help to mitigate effects of a fluctuating energy production arising from the extensive use of renewable energy sources. The applicability of hydrogen (H2) storage in a porous sandstone formation is investigated by defining a usage scenario and a subsequent numerical simulation of a storage operation at an existing anticlinal structure in the North German Basin. A facies modelling approach is used to obtain 25 heterogeneous and realistic parameter sets. The storage operation consists of the initial filling with nitrogen used as cushion gas, the initial filling with H2, and six withdrawal periods with successive refilling and shut-in periods. It is found that, on average, the storage can sustain a continuous power output of 245 MW for 1 week when using five storage wells, while peak performance can be as high as 363 MW, indicating that the storage is mainly limited by the achievable extraction rates. The median of the maximum pressure perturbation caused by this storage is around 3 bars and can be observed at a distance of 5 km from the wells.


Ground Water | 2014

Evaluation of the role of heterogeneities on transverse mixing in bench-scale tank experiments by numerical modeling.

E. Ballarini; Sebastian Bauer; C. Eberhardt; Christof Beyer

In this work, numerical modeling is used to evaluate and interpret a series of detailed and well-controlled two-dimensional bench-scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux-related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high-permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro-scale transverse dispersion than the micro-scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing-influenced or -governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation.


Grundwasser | 2007

Model based prognosis of contaminant leaching for reuse of demolition waste in construction projects

Christof Beyer; Wilfried Konrad; C H Park; Sebastian Bauer; Peter Grathwohl; Hermann Rügner; Rudolf Liedl

in this study, groundwater contamination from recycled demolition waste in road constructions is assessed using predictions of leachate concentrations. Numerical transport simulations are performed for three scenarios (a parking lot, a noise protection barrier, and road), and using a number of characteristic subsoils of germany, to estimate the breakthrough of different contaminant classes at the groundwater table. conservative tracer breakthrough times (btt) primarily depend on subsoil hydraulic properties, for organic pollutants KOc and subsoil Oc are the controlling parameters. Significant concentration reductions from dispersion only occur when source concentrations decrease prior to contaminant breakthrough. if source concentrations remain high for long periods relative to peak btt, concentration breakthrough is undamped. accounting for biodegradation reduces breakthrough concentrations significantly. For the “noise protection barrier” and “road” scenarios, capillary barrier effects cause the seepage water to partially bypass the recycling material. accounting for this bypass flow and spatial averaging across the constructions reduces concentrations by about 30–40 %.


Environmental Earth Sciences | 2016

Thermo-hydro-mechanical analysis of cement-based sensible heat stores for domestic applications

Xing-Yuan Miao; Christof Beyer; Uwe-Jens Görke; Olaf Kolditz; Henok Hailemariam; Thomas Nagel

The thermo-hydro-mechanical behaviour of a water-saturated cement-based heat store for domestic applications has been investigated. Numerical simulations have been employed to locate the critical regions during thermal loading, for which analytical solutions have been derived and validated by numerical simulations. The analytical solutions allow a fast screening of materials and design parameters in relation to the stresses induced by thermomechanical loading. Maximum stresses in the system have been quantified based on the thermomechanical properties of three heat exchanger materials selected by design engineers and of the filling material. Sensitivity analyses indicate that the stress distribution is very sensitive to the thermal expansion coefficients of the involved materials. The results of this study can serve as a guide line for the design of the present and similar heat storage systems. The analytical solution developed is a fast and robust method for the evaluation of stresses around heat exchangers embedded in a solid material and can serve as a tool for design optimisation.

Collaboration


Dive into the Christof Beyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Kolditz

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Dietrich

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge